
Medworth Energy from Waste Combined Heat and Power Facility

PINS ref. EN010110

Document Reference Vol.13.3

Revision: 1.0 Deadline: N/A June 2023

Environmental Statement Chapter6 Appendix 6B Transport Assessment Addendum

We inspire with energy.

Contents

1.	Introd	uction	3
1.1	Backgro		3
1.2	_	ed Changes	3
1.3		ry of Consultation with CCC Highways	4
1.4		e of the Transport Assessment Addendum	4
1.5	•	of the Transport Assessment Addendum	4
2.	Propo	sed Changes	5
2.1	Backgro	ound	5
2.2	_	ed Cromwell Road Junction Signal Scheme	6
2.3		dge Lane Widening Scheme Junction Pavement Works	6
3.	Juncti	on Assessment	8
3.1	Introduc	etion	8
3.2	Traffic F	Flows	8
3.3	Modellin	ng Approach	9
3.4	Analysis Sensitivity T	s and Results resting	10 11
3.5	Conclus	ion	14
4.	Safety	/ Audit	15
4.1	Stage 1	Road Safety Audit (RSA)	15
4.2	Stage 1	RSA Response Report	15
4.3	Consulta	ation Response	16
5.	Concl	usion	17
	Change 1 Change 2		17 17
	Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 3.5	TEMPro Growth Rates: 2021- 2027 2027 Scenario 1: AM Peak Results 2027 Scenario 1: PM Peak Results 2027 Scenario 2: AM Peak Results 2027 Scenario 2: PM Peak Results	8 10 11 12 12
	Table 3.6 Table 3.7	2027 Scenario 3: AM Peak Results 2027 Scenario 3: PM Peak Results	13 14

Appendix A Appendix B Appendix C Appendix D LinSig Results Stage 1 RSA Brief Stage 1 Road Safety Audit Stage 1 Road Safety Audit Response Report

1. Introduction

1.1 Background

- The Medworth Energy from Waste Combined Heat and Power Facility (the Proposed Development) is the subject of an application for development consent (the Application) that was submitted by Medworth CHP Limited (the Applicant) to the Secretary of State for Energy Security and Net Zero (hereafter referred to as the Secretary of State) via the Planning Inspectorate (the Inspectorate) in July 2022. The Application was accepted by the Inspectorate on 2 August 2022 and the Examination commenced on 21 February 2023.
- The Applicant is making a request for non-material changes to the Application. The changes have been identified as a result of recent technical discussions with highways officers from Cambridgeshire County Council (CCC) on the specification of Work No. 4A following written and oral submissions at Issue Specific Hearing (ISH) 2 and Compulsory Acquisition Hearing 2 by CCC as part of the Examination. As CCC has only recently engaged with the Applicant on the design of Work No. 4A, the Applicant does not consider that it would have been possible to identify and make these changes at an earlier stage in the process.
- The Applicant submitted a Change Notification Letter on 18 May 2023 (the Applicant's Letter). The Examining Authority (ExA) issued a procedural decision in respect of the Applicant's Letter on 26 May 2023 (the ExA's Procedural Decision).

1.2 Proposed Changes

- Two changes are proposed to the Application:
 - Change 1: Minor amendments to the Order limits within the boundary of the
 existing public highway at the junction of Cromwell Road and New Bridge Lane
 to facilitate the carrying out of the Access Improvements to the public highway
 forming part of Work No. 4A (the "Cromwell Road Junction Signal Scheme").
 - Change 2: Minor amendments to the Order limits within the boundary of the existing public highway at the junction of New Bridge Lane and Salters Way to install proposed drop kerbs to the existing pavement forming part of Work No. 4A (the "Salters Way Junction Pavement Works").
- These changes are proposed following extensive discussions with highways officers at Cambridgeshire County Council (CCC).
- Further information on the need for the Proposed Change is provided in the **Change Application Report (Volume 13.2)**.

1.3 Summary of Consultation with CCC Highways

- Considerable consultation with CCC highways officers regarding the proposed changes has been undertaken and is ongoing. Consultation activities have included:
 - Online meeting on 13 April 2023;
 - Site meeting in person on 27 April 2023; and
 - Online meeting on 01 June 2023.
- The Applicant has prepared the Cromwell Road Junction Signal Scheme and the Salters Way Junction Pavement Works in consultation with CCC. The signal scheme was discussed with CCC at the meeting on 27 April 2023 at which the Applicant's earlier proposal for signalisation was reviewed and amendments discussed. Updated drawings (to include the pavement works), the LinSig model and Road Safety Audit were then submitted to CCC on 25 May 2023. Subsequent to this submission, a meeting was held with CCC to discuss the design on 01 June 2023 and it was at this meeting that, whilst subject to technical confirmation, the CCC highways officers stated they had no in principle objections to the Applicant's proposals. The Applicant and CCC continue to work together constructively.

1.4 Purpose of the Transport Assessment Addendum

This document, the **ES Chapter 6 Traffic and Transport Appendix 6B Transport Assessment Addendum (Volume 3.11) (the TA Addendum),** has been produced to present the design schemes and results assessment and auditing carried out in relation to the Proposed Changes.

1.5 Content of the Transport Assessment Addendum

- 1.5.1 The TA Addendum includes the following:
 - Section 1: Introduction; setting out details of the Change Request Application and the purpose of the TA Addendum;
 - Section 2: Proposed Changes; outlining the approach adopted in the design development of the proposed signalisation of Cromwell Road/New Bridge Lane junction, New Bridge Lane widening and Salters Way junction pavement works;
 - **Section 3: Junction Assessment**; outlining the proposed design of the signal scheme and operational assessment;
 - Section 4: Safety Audit: a stage one safety audit of the junction; and
 - Section 5: Conclusion; provides a summary of the TA Addendum.

2. Proposed Changes

2.1 Background

- The B198 Cromwell Road/New Bridge Lane junction is currently a four-arm priority junction in which the New Bridge Lane East and West arms are the minor arms, and Cromwell Road is the major arm. Access from the Cromwell Road is provided into the New Bridge Lane arms by way of ghost right turn lanes.
- Volume 6.4 ES Chapter 6 Traffic and Transport Appendix 6B Transport Assessment [APP-073] included a minor improvement design scheme at the junction comprising an informal pedestrian crossing. A junction capacity assessment concluded that there was sufficient capacity to accommodate the operational traffic generated by the Proposed Development. Draft DCO (Volume 3.1) [REP3-007] includes a section of widening of New Bridge Lane in order to accommodate HGVs.
- Consultation with highways officers at CCC post submission of the DCO application and during a meeting on 27 April 2023 identified that, in their opinion, the Cromwell Road/New Bridge Lane junction would need to be signalised for road safety reasons. CCC highways officers cited site observations of slow-moving HGVs turning right into New Bridge Lane from the Cromwell Road southern arm which impeded the flow of traffic on the Cromwell Road northern arm. Control of traffic movements at the junction in the form of signalisation was identified by CCC officers as the solution to ensure that the junction would provide safe and efficient access to New Bridge Lane for HGV traffic during the construction and operational phases of the Proposed Development.
- The proposed improvement scheme is signalisation of all arms of the junction, including a pedestrian crossing on the New Bridge Lane (East) arm.
- Existing access arrangements to adjacent properties, land uses and highways boundary have been considered within the design process. New Bridge Lane West arm provides servicing access into the adjacent Tesco supermarket and New Bridge Lane East provides access to a number of existing industrial properties. The design has therefore included adequate provision for HGV vehicles and maintained existing access arrangements.
- In addition to the Cromwell Road/New Bridge Lane junction, changes to the design of the New Bridge Lane widening proposals have been discussed with CCC officers based on the need to improve the road safety environment for non-motorised users (NMUs) which include pedestrians and cyclists.
- The design approach for the junction is set out in **Section 2.2** below and proposed changes to the New Bridge Lane widening is set out in **Sections 2.3** and **2.4**.

2.2 Proposed Cromwell Road Junction Signal Scheme

- The signal junction design has been developed using both national and local design guidance, including the following documents:
 - Chapter 5 Road Markings (2018) of the Traffic Signs Manual (TSM), Department for Transport (DfT);
 - Chapter 6 Traffic Control (2019) of the TSM; and
 - Standard Specification for Traffic Signals and Systems, CCC, April 2021.
- The proposed layout of the signal scheme is shown in Figure 10.1iv Rev1A Cromwell Road/New Bridge Lane Signal Scheme General Arrangement in the Outline CTMP Rev 4A. The proposed scheme comprises the following components:
 - Provision of stop lines and primary and secondary traffic signal columns on all arms of the junction;
 - Realignment of the kerbs throughout the junction to accommodate additional lanes and the swept path of anticipated HGV movements.
 - Provision of islands within the junction to accommodate the new traffic signal equipment.
 - Provision of signalised right turns on the B198 North and South arms with right turn only lanes and right turn road markings mid junction.
 - Provision of a signalised pedestrian crossing over New Bridge Lane East arm.
 - Provision of all necessary road markings to ensure clear guidance to vehicles.
- The design has been tested for its suitability to accommodate HGV vehicles by undertaking swept path assessments of junction turning movements using Autodesk Vehicle Tracking software. Figure 9.2i and ii AlL SPA Cromwell Road / New Bridge Lane in the Outline CTMP Rev 4A shows the swept path of an articulated HGV and it demonstrates that anticipated HGV movements can be accommodated within the proposed junction layout.

2.3 New Bridge Lane Widening Scheme

- The New Bridge Lane widening seeks to widen New Bridge Lane carriageway to 6.8m wide to accommodate HGV movements generated by the Medworth EfW CHP Facility Site.
- Included in the DCO application is a proposal to reopen New Bridge Lane across the disused March to Wisbech Railway, with the agreement of Network Rail, and to enable the Applicant to take access from Cromwell Road into the proposed EfW CHP Facility Site.
- New Bridge Lane will be closed east of the proposed site access and that as such it will not operate as a through route for vehicular traffic.

Salters Way Junction Pavement Works

The Salters Way Junction Pavement Works comprise an element of the New Bridge Lane Widening Scheme and consist of improvement works in the form of a dropped kerb crossing and tactile paving planned for the southern end of Salters Way for the benefit of pedestrians and other NMUs.

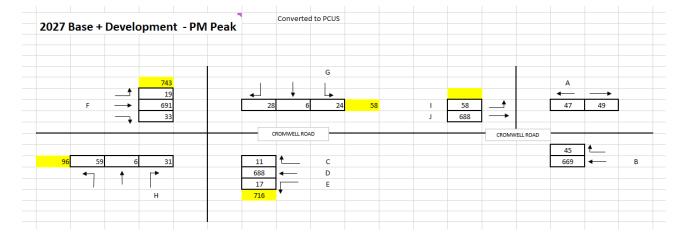
3. Junction Assessment

3.1 Introduction

- Agreed in advance with CCC, the proposed signalisation of Cromwell Road/New Bridge Lane junction was tested for capacity using industry standard Linsig software. As there is an existing Cromwell Road/Tesco traffic signal junction located less than 100 metres to the north, the LinSig model linked both junctions in order to optimise the signal design to minimise delays in the internal links between these two junctions and therefore the risk of tailback queues.
- The following sections summarise the modelling approach and the junction capacity appraisal results.

3.2 Traffic Flows

- The traffic turning data at the Cromwell Road/New Bridge Lane junction has been based on the traffic data provided in **Volume 6.4 ES Chapter 6 Traffic and Transport Appendix 6B Transport Assessment [APP-073]**.
- Traffic data for Tesco junction has been derived from the LinSig model provided by CCC highways officers. These traffic flows have been used to calculate the turning movements of the Tesco junction for the future scenarios based on the traffic growth rates includes in Volume 6.4 ES Chapter 6 Traffic and Transport Appendix 6B Transport Assessment [APP-073], as set out in Table 3.1 below. It is noted that the Tesco LinSig model was calibrated against the traffic surveys undertook by Tesco in 2016.


Table 3.1 TEMPro Growth Rates: 2021-2027

Time Period	Light Vehicles	HGVs
Weekday AM Peak	1.0599	1.0946
Weekday PM Peak	1.0606	1.0953

- The above growth rates have been applied to the 2021 survey data to derive future year baseline traffic flows for year 2027 for the Tesco junction when the Proposed Development is expected to operate.
- The operational traffic flows generated by the Proposed Development for the AM Peak and PM Peak have been derived from Figure 7.3 and Figure 7.4 of Volume 6.4 ES Chapter 6 Traffic and Transport Appendix 6B Transport Assessment [APP-073].
- The 2027 baseline with development flows for AM Peak and PM Peak are summarised in **Figure 3.1** and **Figure 3.2** below.

Figure 3.1 2027 Future Flows + Development Flows AM Peak

Figure 3.2 2027 Future Flows + Development Flows PM Peak

3.3 Modelling Approach

The linked LinSig model has been constructed using the following data sources:

- The geometric data of Cromwell Road/New Bridge Lane junction have been based on Figure 10.1iv Rev1A Cromwell Road/New Bridge Lane Signal Scheme – General Arrangement in the Outline CTMP Rev 4A. Geometric data for the existing Cromwell Road/Tesco junction has been from the Ordnance Survey Master Map.
- The signal timings, phases and cycle times for the Tesco junction have been based on the controller spec dated 14-01-2014 version 114/02/2014MM provided by CCC.
- The proposed signal timing, phases and intergreen times of the proposed Cromwell Road/New Bridge Lane traffic signal have been developed in accordance with TSM Chapter 6 and CCC traffic signal standard specification.

The junction capacity assessment has been carried out for the following:

- Scenario 1 2027 Future Baseline +Development.
- In addition, two sensitivity scenarios have been modelled:
 - Scenario 2 2027 Future Baseline +Development, traffic flows increased by 10%.
 - Scenario 3 2027 Future Baseline +Development, traffic flows increased by 20%.

3.4 Analysis and Results

- LinSig modelling results are presented as the Degree of Saturation (DoS) and the Mean Maximum Queue (MMQ) which is shown in Passenger Car Units (PCUs) for each lane of the junction.
- A DoS of 100% indicates that the lane in question is operating at its absolute capacity (point of saturation), whilst a DoS of 90% or less indicates that the lane is operating within its practical capacity. LinSig also refers to the Practical Reserve Capacity (PRC) of which a positive value indicates that the junction is operating within capacity and a negative value means the junction is over capacity.
- The LinSig model outputs are presented in **Appendix A**.

Scenario 1: 2027 Future Baseline Flows + Development Traffic

The future year baseline flows along with development traffic have been modelled and the results obtained for AM Peak and PM Peak are shown in **Table 3.2** and **Table 3.3** below.

Table 3.2 2027 Scenario 1: AM Peak Results

Junctions	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell Road/	Cromwell Road (SB) - internal link	42.8.	9.7	5.4
New Bridge Lane	New Bridge Lane (WB)	38.4	57.3	1.7
Junction	Cromwell Road (NB)	68.3	15.4	14.1
	New Bridge Lane (EB)	16.1	52.9	0.7
Tesco	Cromwell Road (SB)	47.9	12.9	7.1
Junction	Tesco Exit Left: Right	21.4: 25.6	31.7: 40.7	1.9:1.8
	Tesco Entrance	17.1	1.1	1.2
	Cromwell Road (NB) – internal link	62.5	4.6	1.5
	Cycle Time (s)	90		

Junctions	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
	PRC (%)	31.8		
	Delay (PCU/Hr)	10.98		

Table 3.3 2027 Scenario 1: PM Peak Results

Junctions	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell Road/	Cromwell Road (SB) - internal link	59.9	6.6	2.5
New Bridge Lane	New Bridge Lane (WB)	53.3	59.7	2.8
Junction	Cromwell Road (NB)	63.0	15.0	12.1
	New Bridge Lane (EB)	33.1	54.4	1.6
Tesco	Cromwell Road (SB)	63.1	16.1	12.1
Junction	Tesco Exit Left: Right	11.4:15.3	30.4:39.1	1.0:1.1
	Tesco Entrance	13.8	1.1	0.1
	Cromwell Road (NB) – internal link	60.4	9.3	4.3
	Cycle Time (s)	90		
	PRC (%)	42.5		
	Delay (PCU/Hr)	12.99		

- The junction capacity modelling results indicate that the junction would operate within capacity during both the AM Peak and PM Peak with the Proposed Development traffic flows. A queue of approximately five vehicles over two lanes is predicted on Cromwell Road southbound arm between the two junctions (internal link) during the AM Peak. This can be accommodated within the lane length between the two junctions as there is stacking space for around three PCU per lane (therefore six PCU) which will accommodate the predicted queue length, thereby avoiding a tailback issue.
- PRC values are high for both peak periods, 31.8% in the AM peak and 42.5% in the PM peak, indicating that there is ample capacity at both traffic signal junctions.

Sensitivity Testing

Given the queue length, in order to determine the sensitivity level of the LinSig model to the increase in traffic flows, the model has been tested with total traffic flows (baseline and Proposed Development) being increased by 10% (Scenario 2) and by 20% (Scenario 3) as described below.

Scenario 2: 2027 Future Baseline Flow + Development Traffic, Traffic flows increased by 10%

The results of this scenario are summarised in **Table 3.4** and **Table 3.5**.

Table 3.4 2027 Scenario 2: AM Peak Results

Junction	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell	Cromwell Road (SB) - internal link	47.1	10.1	6.0
Road/ New	New Bridge Lane (WB)	42.9	58.8	2.0
Bridge Lane	Cromwell Road (NB)	75.1	17.6	16.8
Junction	New Bridge Lane (EB)	17.4	58.1	0.7
Tesco	Cromwell Road (SB)	52.7	13.6	8.3
Junction	Tesco Exit Left : Right	23.5: 28.0	32.0:41.1	2.1:2.0
	Tesco Entrance	18.8	1.2	1.2
	Cromwell Road (NB) – internal link	68.8	5.4	1.8
	Cycle Time (s)	90		
	PRC (%)	19.9		
	Delay (PCU/Hr)	13.04		

Table 3.5 2027 Scenario 2: PM Peak Results

Junction	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell Road/	Cromwell Road (SB) - internal link	65.8	7.5	3.0
New Bridge	New Bridge Lane (WB)	58.8	62.6	3.2
Lane Junction	Cromwell Road (NB)	69.3	16.6	14.4
	New Bridge Lane (EB)	37.0	55.7	1.8
Tesco Junction	Cromwell Road (SB)	69.5	17.8	14.4
Canonon	Tesco Exit Left : Right	12.6:16.6	30.6:39.3	1.1:1.2
	Tesco Entrance	15.2	1.1	0.1
	Cromwell Road (NB) – internal link	66.5	9.9	4.8
	Cycle Time (s)	90		

Junction	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
	PRC (%)	29.5		
	Delay (PCU/Hr)	15.5		

The results summarised in **Table 3.4** and **3.5** shows that the junction is predicted to operate well with spare capacity. The queue on Cromwell Road can be accommodated within the available stacking space.

Scenario 3: 2027 Future Baseline Flow + Development Traffic, Traffic flows increased by 20%

The results of this scenario are summarised in **Table 3.6** and **Table 3.7**.

Table 3.6 2027 Scenario 3: AM Peak Results

Junction	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell Road/	Cromwell Road (SB) - internal link	51.5	10.5	6.6
New Bridge Lane	New Bridge Lane (WB)	46.1	60.1	2.1
Junction	Cromwell Road (NB)	81.9	20.9	20.6
	New Bridge Lane (EB)	19.3	53.6	0.8
Tesco	Cromwell Road (SB)	57.5	14.4	9.7
Junction	Tesco Exit Left: Right	25.9: 31.0	32.4:41.6	2.4:2.3
	Tesco Entrance	20.5	1.2	1.2
	Cromwell Road (NB) – internal link	75.0	6.5	2.3
	Cycle Time (s)	90		
	PRC (%)	9.9		
	Delay (PCU/Hr)	15.70		

Table 3.7 2027 Scenario 3: PM Peak Results

Junction	Lane	Sat (%)	Delay (s/PCU)	Queue (PCU)
Cromwell Road/	Cromwell Road (SB) - internal link	72.0	8.6	3.6
New Bridge Lane	New Bridge Lane (WB)	63.9	66.0	3.6
Junction	Cromwell Road (NB)	75.7	18.9	17.3
	New Bridge Lane (EB)	39.9	56.8	2.0
Tesco	Cromwell Road (SB)	75.9	20.0	17.0
Junction	Tesco Exit Left: Right	13.5:18.6	30.7:39.7	1.2:1.3
	Tesco Entrance	16.5	1.1	0.1
	Cromwell Road (NB) – internal link	72.4	11.4	5.6
	Cycle Time (s)	90		
	PRC (%)	18.6		
	Delay (PCU/Hr)	18.67		

The results in **Table 3.6** and **Table 3.7** indicate that both junctions are anticipated to operate with spare capacity even when the future baseline and development flows are increased to 20%. A queue may occasionally develop on the Cromwell Road (SB) at the New Bridge Lane junction that affects the Tesco junction in the AM peak. It is noted that this is a robust approach as the 20% growth is applied both baseline and Proposed Development traffic.

3.5 Conclusion

In all the three scenarios, the traffic model results indicate similar results for the proposed signalisation of the Cromwell Road/New Bridge Lane and the Tesco junctions. Therefore, it can be concluded that the traffic model is robust and there are no junction capacity issues anticipated and the development traffic would have no significant effect on the operation of the junction.

4. Safety Audit

4.1 Stage 1 Road Safety Audit (RSA)

- A Stage 1 RSA was undertaken on Friday 12 May 2023 for the proposed Cromwell Road/New Bridge Lane traffic signal layout and the alterations proposed along New Bridge Lane to widen it to 6.8m wide to accommodate HGV movements generated by the proposed EfW CHP Facility.
- The RSA examined the documents and drawings provided in the RSA brief and supplied to the RSA team, and the RSA has been conducted in accordance with the Design Manual for Roads and Bridges (DMRB) Standard GG 119 Road Safety Audit, Revision 2.
- Fourteen potential road safety matters were identified and recommendations for potential mitigation measures to be considered by the design team are also included in the RSA report. The RSA report has not highlighted any major road safety issues.
- A copy of the Stage 1 RSA Brief and Stage 1 RSA Report is included as **Appendix B** and **Appendix C** respectively.

4.2 Stage 1 RSA Response Report

- A response report has been prepared by the design team and submitted to the Overseeing Organisation (CCC) for approval. A copy of the Stage 1 RSA Response Report is included as **Appendix D**.
- The response report addresses the road safety matters raised in the RSA, and includes the following:
 - The recommended action to provide maintenance access for the relocated existing compact sub-station on New Bridge Lane (East) has been rejected by the design team as the maintenance work would be done by a small team under a temporary traffic management therefore a dedicated access would not be required.
 - Four recommended actions will be discussed and developed in the detailed design stage. These are:
 - Relocation of the existing Copart traffic sign on New Bridge Lane;
 - Proposed signal staging at New Bridge Lane / Cromwell Road junction. The LinSig traffic signal model has been submitted to CCC for review and approval;
 - Limited restrictions along New Bridge Lane (East); and
 - Traffic signal 'see through effect" on Cromwell Road.

4.3 Consultation Response

The Response Report has responded to all of the matters highlighted in the Stage 1 RSA and whilst subject to confirmation, the Applicant understands there are no in principle objections to the conceptual layout. CCC and the Applicant continue to work constructively and will provide updates to the ExA during the Examination. Concerning the Proposed Changes.

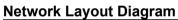
5. Conclusion

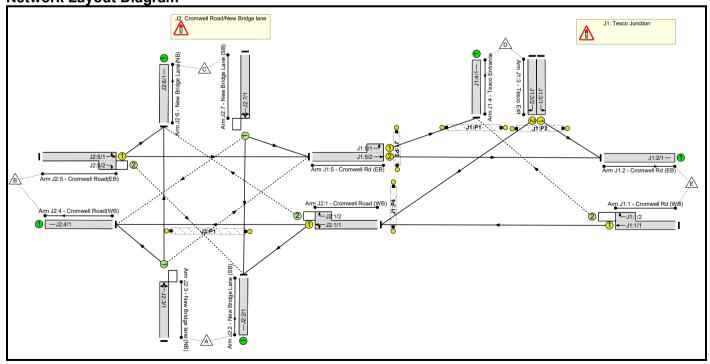
- On going consultation has been undertaken with CCC for the proposed traffic signal junction layout and the proposed traffic signal operation is predicted to have no detrimental impacts on the highway capacity along Cromwell Road, New Bridge Lane and the existing Cromwell Road / Tesco traffic signal junction.
- A Stage 1 Road Safety Audit has not identified any major issues with the proposed signalisation of the Cromwell Road / New Bridge Lane junction and the changes along New Bridge Lane.
- 5.1.3 While one action recommended by the RSA was deemed not required, the remaining recommendations were accepted and have been addressed in the proposed layout submitted by the Applicant.
- The Applicant and CCC agreed position statement has been included in the Change Report and is summarised below:

Change 1

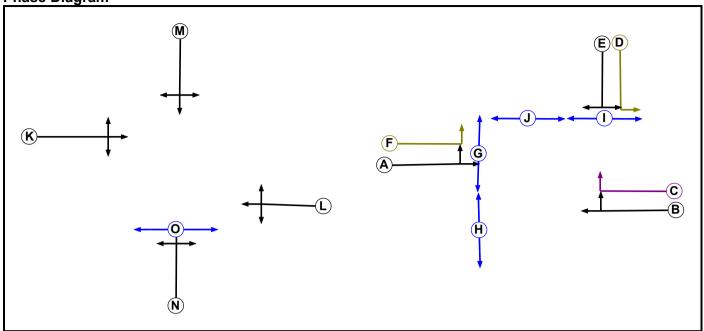
- 5.1.5 CCC has undertaken an initial review of the Applicant's proposed signalised junction arrangements. The modelling, signal staging, and phasing, along with the Stage 1 Safety Audit will be reviewed by CCC in due course. Whilst subject to confirmation, the Applicant understands there are no in principle objections to the conceptual layout.
- The land subject to the change application is within the public highway (subject to CCC's general caveats regarding highway boundaries), except for an area that CCC intends to adopt once a Provisional Certificate is issued to Tesco Stores Ltd under an existing S278 agreement (13 December 2013). CCC are actively pursuing this matter and a Provisional Certificate might be secured within the Examination timeframe, however there is no guarantee. Other options are being explored. Therefore, CCC understands that the Applicant will proceed with a change application to secure temporary possession of the land. CCC raise no objection to this approach.

Change 2


5.1.7 CCC raise no objection to extending the Order limits to encompass all areas of highway that will be required to enable delivery of the scheme.


Appendix A LinSig Results

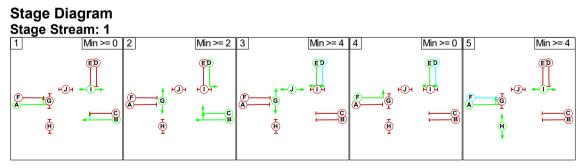
Full Input Data And Results Full Input Data And Results

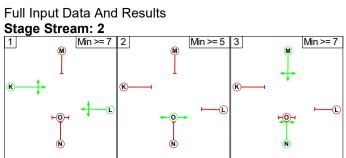

User and Project Details

Project:	Medworth Energy from Waste Combined Heat and Power Facility DCO
Title:	Junction Upgrading
Location:	Cromwell Road/New Bridge lane Medworth
Client:	Medworth Energy Limited
Date Started:	09/05/23
Date Completed:	18/05/23
Model Purpose:	Scheme Design Only
Flow Details:	The flow data for Cromwell Road/New Bridge Lane has been calculated based on 2027 Baseline flow data.(Please refer the flow calculation spreadsheet)
Safety Considerations:	None
Checked By:	Amber Elkin
Checked By Date:	18/05/23
Additional detail:	Signal infromation for Tesco junction are taken from Controller Spec(14/01/2014)
File name:	Medworth Cromwell RoadNew Bridge Lane V2- Scenario tested.lsg3x
Author:	Varsha Suresh
Company:	WSP UK Limited
Address:	Amber CourtWilliam Armstrong DriveNewcastle upon Tyne NE4 7YQUnited KingdomTel +44 (0)191 226 2000

Phase Diagram

Phase Input Data


Phase Name		Stage Stream	Assoc. Phase	Street Min	Cont Min
А	Traffic	1		7	7
В	Traffic	1		7	7
С	Ind. Arrow	1	В	4	4
D	Filter	1	E	4	0
Е	Traffic	1		7	7
F	Filter	1	А	4	0
G	Pedestrian	1		5	5
Н	Pedestrian	1		4	4
I	Pedestrian	1		5	5
J	Pedestrian	1		4	4
К	Traffic	2		7	7
L	Traffic	2		7	7
М	Traffic	2		7	7
N	Traffic	2		7	7
0	Pedestrian	2		5	5


Phase Intergreens Matrix

Phase Inte	rgr	ee	115	IVI	aur i	X										
						5	Star	ting	Ph	ase)					
		Α	В	С	D	Е	F	G	Н	I	J	K	L	М	Ν	0
	Α		-	5	6	6	-	6	-	-	7	-	-	-	-	-
	В	-		ı	-	6	6	•	9	•	8	-	•	ı	•	-
	С	6	-		1	6	6	-	-	•	8	-	-	-	-	1
	D	5	-	-		-	-	-	-	5	-	-	-	-	-	-
	ш	5	5	5	-		ı	•	9	5	-	-	•	ı	•	-
	F	-	0	5	-	-		6	-	-	7	-	-	-	-	-
Terminating	G	8	-	-	-	-	8		-	-	-	-	-	-	-	-
Phase	Ι	-	5	-	-	5	•	•		•	-	-	-	•	•	-
	_	-	-	-	7	7	•	•	-		ı	-	•	ı	•	-
	J	7	7	7	-	-	7	-	-	-		-	-	-	-	-
	K	-	-	-	-	ı	ı	•	-	•	-		ı	6	5	8
	L	-	-	-	-	-	-	-	-	-	-	-		5	5	7
	М	-	-	-	-	-	-	-	-	-	-	5	6		-	8
	Ν	_	-	-	_	-	-	-	-	-	-	5	6	-		5
	0	-	-	-	-	•	•	-	-	•	-	9	9	9	9	

Phases in Stage

	090	
Stream	Stage No.	Phases in Stage
1	1	ABI
1	2	BCDG
1	3	EGJ
1	4	EF
1	5	AHI
2	1	KL
2	2	0
2	3	MN

Phase Delays Stage Stream: 1

Term. Stage	Start Stage	Phase	Туре	Value	Cont value
	There are no	Phase D	elays d	efined	

Stage Stream: 2

Term. Stage	Start Stage	Phase	Туре	Value	Cont value					
	There are no Phase Delays defined									

Prohibited Stage Change Stage Stream: 1

Stage Stream. 1									
		To Stage							
		1	2	3	4	5			
	1		7	8	7	9			
From	2	X		8	8	Χ			
Stage	3	8	7		8	9			
	4	5	X	X		9			
	5	5	7	7	7				

Stage Stream: 2

otago otroann z									
	To Stage								
		1	2	3					
From	1		8	6					
Stage	2	9		9					
	3	6	8						

Full Input Data And Results
Give-Way Lane Input Data

Junction: J1: Tesco	Junction: J1: Tesco Junction											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	DTE	Right Turn Move up (s)	Max Turns in Intergreen (PCU)	
J1:1/2 (Cromwell Rd (WB))	J1:4/1 (Right)	1439	0	J1:4/1	1.09	All	3.00	-	0.50	3	3.00	

Junction: J2: Cromwe	II Road/New B	ridge lane									
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
J2:1/2 (Cromwell Road (WB))	J2:6/1 (Right)	1439	0	J2:5/1	1.09	All	2.00	-	0.50	2	2.00
J2:3/1 (New Bridge lane (NB))	J1:5/2 (Right)	1439	0	J2:7/1	1.09	To J1:5/2 (Left) To J2:2/1 (Ahead)	2.00	2.00	0.50	2	2.00
J2:5/2 (Cromwell Road(EB))	J2:2/1 (Right)	1439	0	J2:1/1	1.09	All	2.00	-	0.50	2	2.00
J2:7/1 (New Bridge Lane (SB))	J2:4/1 (Right)	1439	0	J2:3/1	1.09	To J2:4/1 (Left) To J2:6/1 (Ahead)	2.00	2.00	0.50	2	2.00

Lane Input Data

Junction: J1:		Junction	l									
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
J1:1/1 (Cromwell Rd (WB))	U	В	2	3	60.0	Geom	-	3.00	0.00	Y	Arm J2:1 Ahead	Inf
J1:1/2 (Cromwell Rd (WB))	0	вс	2	3	3.5	Geom	-	3.00	0.00	Y	Arm J1:4 Right	11.11
J1:2/1 (Cromwell Rd (EB))	U		2	3	60.0	Inf	-	-	-	-	-	-
J1:3/1 (Tesco Exit)	U	ED	2	3	4.2	Geom	-	3.25	0.00	Y	Arm J1:2 Left	9.66
J1:3/2 (Tesco Exit)	U	E	2	3	4.2	Geom	-	3.25	0.00	Y	Arm J2:1 Right	19.52
J1:4/1 (Tesco Entrance)	U		2	3	60.0	Geom	-	3.25	0.00	Y		
J1:5/1 (Cromwell Rd (EB))	U	AF	2	3	2.9	Geom	-	3.00	0.00	Y	Arm J1:4 Left	12.19
J1:5/2 (Cromwell Rd (EB))	U	A	2	3	8.6	Geom	-	3.00	0.00	Y	Arm J1:2 Ahead	Inf

Junction: J2:	Cromw	ell Road/	New Br	idge la	ne							
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
J2:1/1											Arm J2:2 Left	5.44
(Cromwell Road (WB))	U	L	2	3	4.9	Geom	-	3.25	0.00	Υ	Arm J2:4 Ahead	Inf
J2:1/2 (Cromwell Road (WB))	0	L	2	3	2.9	Geom	-	3.25	0.00	Υ	Arm J2:6 Right	15.50
J2:2/1 (New Bridge Lane (SB))	U		2	3	60.0	Inf	-	-	-	-	-	-
											Arm J1:5 Right	23.70
J2:3/1 (New Bridge lane (NB))	0	N	2	3	4.9	Geom	-	3.77	0.00	Υ	Arm J2:4 Left	10.77
(//											Arm J2:6 Ahead	Inf
J2:4/1 (Cromwell Road(WB))	U		2	3	60.0	Inf	-	-	-	-	-	-
J2:5/1 (Cromwell	U	K	2	3	60.0	Geom	_	3.00	0.00	Y	Arm J1:5 Ahead	Inf
Road(EB))											Arm J2:6 Left	8.10
J2:5/2 (Cromwell Road(EB))	0	К	2	3	3.0	Geom	-	3.00	0.00	Υ	Arm J2:2 Right	13.03
J2:6/1 (New Bridge Lane(NB))	U		2	3	60.0	Inf	-	-	-	-	-	-
											Arm J1:5 Left	6.78
J2:7/1 (New Bridge Lane (SB))	0	M	2	3	6.5	Geom	-	3.74	0.00	Υ	Arm J2:2 Ahead	Inf
											Arm J2:4 Right	17.14

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: '2027 Development flows- AM Peak'	08:00	09:00	01:00	
2: '2027 Development flows PM Peak'	17:00	18:00	01:00	
3: '2027 Forecast Flows AM Peak'	08:00	09:00	01:00	
4: '2027 Forecast Flow PM Peak'	17:00	18:00	01:00	
5: '2027 Baseline +20%-AM Peak'	08:00	09:00	01:00	

6: '2027 Baseline +20%- PM Peak'	17:00	18:00	01:00	
7: '2027 Baseline +10%- AM Peak'	08:00	09:00	01:00	
8: '2027 Baseline+10%- PM Peak'	17:00	18:00	01:00	

Scenario 1: '2027 Base+Development AM Peak' (FG1: '2027 Development flows- AM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired
Desired Flow:

	Destination											
		Α	В	С	D	Е	Tot.					
	Α	0	55	0	1	4	60					
	В	54	0	12	225	530	821					
Origin	С	3	10	0	4	8	25					
	D	0	76	1	0	92	169					
	E	3	437	4	101	0	545					
	Tot.	60	578	17	331	634	1620					

Traffic Lane Flows									
Lane	Scenario 1: 2027 Base+Development AM Peak								
Junction: J1: To	esco Junction								
J1:1/1 (with short)	545(In) 444(Out)								
J1:1/2 (short)	101								
J1:2/1	634								
J1:3/1	92								
J1:3/2	77								
J1:4/1	331								
J1:5/1 (short)	230								
J1:5/2 (with short)	772(In) 542(Out)								
Junction: J2: C	romwell Road/New Bridge lane								
J2:1/1 (with short)	521(In) 516(Out)								
J2:1/2 (short)	5								
J2:2/1	60								
J2:3/1	60								
J2:4/1	578								
J2:5/1 (with short)	821(In) 767(Out)								
J2:5/2 (short)	54								
J2:6/1	17								
J2:7/1	25								

Lane Saturation Flows

Junction: J1: Tesco Junction										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915		
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687		
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf				
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679		
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802		
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940		
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705		
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915		

Full Input Data And Results										
Junction: J2: Cromwell Road/New Bridge lane										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
10.4 /4	3.25			Arm J2:2 Left	5.44	0.6 %				
J2:1/1 (Cromwell Road (WB))		0.00	Y	Arm J2:4 Ahead	Inf	99.4 %	1937	1937		
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769		
J2:2/1 (New Bridge Lane (SB) Lane 1)		Infinite Saturation Flow						Inf		
J2:3/1				Arm J1:5 Right	23.70	8.3 %				
	3.77	0.00	Y	Arm J2:4 Left	10.77	91.7 %	1758	1758		
(New Bridge lane (NB))		0.00		Arm J2:6 Ahead	Inf	0.0 %				
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf		
J2:5/1	3.00	0.00	Y	Arm J1:5 Ahead	Inf	98.4 %	1909	1909		
(Cromwell Road(EB))				Arm J2:6 Left	8.10	1.6 %				
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717		
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf		
				Arm J1:5 Left	6.78	48.0 %				
J2:7/1 (New Bridge Lane (SB))	3.74 0.00	Υ	Arm J2:2 Ahead	Inf	12.0 %	1743	1743			
			Arm J2:4 Right	17.14	40.0 %					

Scenario 2: '2027 Base+Development PM Peak' (FG2: '2027 Development flows PM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired

Desired Flow:

	7											
	Destination											
		Α	В	С	D	E	Tot.					
	Α	0	59	6	9	22	96					
	В	33	0	19	206	485	743					
Origin	С	6	28	0	7	17	58					
	D	0	46	0	0	49	95					
	Е	4	659	6	45	0	714					
	Tot.	43	792	31	267	573	1706					

Traffic Lane Flows								
Lane	Scenario 2: 2027 Base+Development PM Peak							
Junction: J1: To	esco Junction							
J1:1/1 (with short)	714(In) 669(Out)							
J1:1/2 (short)	45							
J1:2/1	573							
J1:3/1	49							
J1:3/2	46							
J1:4/1	267							
J1:5/1 (short)	222							
J1:5/2 (with short)	746(In) 524(Out)							
Junction: J2: C	romwell Road/New Bridge lane							
J2:1/1 (with short)	715(ln) 709(Out)							
J2:1/2 (short)	6							
J2:2/1	43							
J2:3/1	96							
J2:4/1	792							
J2:5/1 (with short)	743(ln) 710(Out)							
J2:5/2 (short)	33							
J2:6/1	31							
J2:7/1	58							

Lane Saturation Flows

Junction: J1: Tesco Junction										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915		
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687		
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf				
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679		
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802		
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940		
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705		
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915		

Full Input Data And Results										
Junction: J2: Cromwell Road/New Bridge lane										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
J2:1/1 (Cromwell Road (WB))				Arm J2:2 Left	5.44	0.6 %		1937		
	3.25	0.00	Υ	Arm J2:4 Ahead	Inf	99.4 %	1937			
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769		
J2:2/1 (New Bridge Lane (SB) Lane 1)		Infinite Saturation Flow						Inf		
				Arm J1:5 Right	23.70	32.3 %				
J2:3/1	3.77	3.77 0.00	Y	Arm J2:4 Left	10.77	61.5 %	1801	1801		
(New Bridge lane (NB))				Arm J2:6 Ahead	Inf	6.3 %				
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf		
J2:5/1	3.00	0.00	Y	Arm J1:5 Ahead	Inf	97.3 %	1906	1906		
(Cromwell Road(EB))				Arm J2:6 Left	8.10	2.7 %				
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717		
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf		
				Arm J1:5 Left	6.78	41.4 %				
J2:7/1 (New Bridge Lane (SB))	3.74 0.00	Y	Arm J2:2 Ahead	Inf	10.3 %	1754	1754			
				Arm J2:4 Right	17.14	48.3 %				

Scenario 3: '2027 Baseline Increased by 20% AM Peak' (FG5: '2027 Baseline +20%-AM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired

Desired Flow:

	Destination											
		Α	В	С	D	E	Tot.					
	Α	0	66	0	2	4	72					
	В	65	0	14	270	636	985					
Origin	С	4	12	0	4	10	30					
	D	1	91	1	0	111	204					
	E	3	525	5	122	0	655					
	Tot.	73	694	20	398	761	1946					

Traffic Lane Flows								
Lane	Scenario 3: 2027 Baseline Increased by 20% AM Peak							
Junction: J1: Tesco	Junction							
J1:1/1 (with short)	655(In) 533(Out)							
J1:1/2 (short)	122							
J1:2/1	761							
J1:3/1	111							
J1:3/2	93							
J1:4/1	398							
J1:5/1 (short)	276							
J1:5/2 (with short)	926(In) 650(Out)							
Junction: J2: Cromv	vell Road/New Bridge lane							
J2:1/1 (with short)	626(In) 620(Out)							
J2:1/2 (short)	6							
J2:2/1	73							
J2:3/1	72							
J2:4/1	694							
J2:5/1 (with short)	985(In) 920(Out)							
J2:5/2 (short)	65							
J2:6/1	20							
J2:7/1	30							

Lane Saturation Flows

Junction: J1: Tesco Junction										
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)		
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915		
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687		
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf				
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679		
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802		
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940		
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705		
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915		

Full Input Data And Results									
Junction: J2: Cromwell Road/	New Bri	dge lane							
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)	
J2:1/1 (Cromwell Road (WB))	3.25			Arm J2:2 Left	5.44	0.6 %			
		0.00	Y	Arm J2:4 Ahead	Inf	99.4 %	1937	1937	
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769	
J2:2/1 (New Bridge Lane (SB) Lane 1)		Infinite Saturation Flow						Inf	
				Arm J1:5 Right	23.70	8.3 %			
J2:3/1	3.77	0.00	Y	Arm J2:4 Left	10.77	91.7 %	1758	1758	
(New Bridge lane (NB))			Arm J2:6 Ahead	Inf	0.0 %				
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf	
J2:5/1 (Cromwell Road(EB))	3.00	0.00	Y	Arm J1:5 Ahead	Inf	98.5 %	1910	1910	
(Croniwell Road(Eb))				Arm J2:6 Left	8.10	1.5 %			
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717	
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf	
J2:7/1 (New Bridge Lane (SB))				Arm J1:5 Left	6.78	46.7 %			
	3.74 0.00	Y	Arm J2:2 Ahead	Inf	13.3 %	1747	1747		
				Arm J2:4 Right	17.14	40.0 %			

Scenario 4: '2027 Baseline Increased by 20% PM Peak' (FG6: '2027 Baseline +20%- PM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired

Desired Flow:

	Destination						
Origin		Α	В	С	D	E	Tot.
	Α	0	71	7	11	26	115
	В	40	0	23	247	582	892
	С	7	34	0	9	20	70
	D	0	55	1	0	58	114
	Е	5	791	8	54	0	858
	Tot.	52	951	39	321	686	2049

Traffic Lane Flows

Traffic Lane Flows									
Lane	Scenario 4: 2027 Baseline Increased by 20% PM Peak								
Junction: J1: Tesco	Junction								
J1:1/1 (with short)	858(In) 804(Out)								
J1:1/2 (short)	54								
J1:2/1	686								
J1:3/1	58								
J1:3/2	56								
J1:4/1	321								
J1:5/1 (short)	267								
J1:5/2 (with short)	895(In) 628(Out)								
Junction: J2: Cromv	vell Road/New Bridge lane								
J2:1/1 (with short)	860(In) 851(Out)								
J2:1/2 (short)	9								
J2:2/1	52								
J2:3/1	115								
J2:4/1	951								
J2:5/1 (with short)	892(In) 852(Out)								
J2:5/2 (short)	40								
J2:6/1	39								
J2:7/1	70								

Lane Saturation Flows

Junction: J1: Tesco Junction									
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)	
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915	
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687	
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf			
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679	
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802	
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940	
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705	
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915	

Full Input Data And Results Junction: J2: Cromwell Road/l	New Bri	dge lane						
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
10.4/4			Y	Arm J2:2 Left	5.44	0.6 %		
J2:1/1 (Cromwell Road (WB))	3.25	0.00		Arm J2:4 Ahead	Inf	99.4 %	1937	1937
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769
J2:2/1 (New Bridge Lane (SB) Lane 1)				Inf	Inf			
J2:3/1 (New Bridge lane (NB))				Arm J1:5 Right	23.70	32.2 %	1801	
	3.77	0.00	Y	Arm J2:4 Left	10.77	61.7 %		1801
		0.00	•	Arm J2:6 Ahead	Inf	6.1 %		
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
J2:5/1	3.00	0.00	Y	Arm J1:5 Ahead	Inf	97.3 %	1905	1905
(Cromwell Road(EB))				Arm J2:6 Left	8.10	2.7 %		
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
				Arm J1:5 Left	6.78	41.4 %		
J2:7/1 (New Bridge Lane (SB))	3.74	0.00	Υ	Arm J2:2 Ahead	Inf	10.0 %	1754	1754
			[Arm J2:4 Right	17.14	48.6 %		

Scenario 5: '2027 Baseline increased by 10% AM Peak' (FG7: '2027 Baseline +10%- AM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired

Desired Flow:

	_												
		Destination											
		Α	В	С	D	Е	Tot.						
	Α	0	61	0	2	4	67						
	В	59	0	13	248	583	903						
Origin	С	3	11	0	4	9	27						
	D	0	83	1	0	101	185						
	Е	3	481	5	111	0	600						
	Tot.	65	636	19	365	697	1782						

Traffic Lane Flows

Traffic Lane Flows									
Lane	Scenario 5: 2027 Baseline increased by 10% AM Peak								
Junction: J1: Tesco	Junction								
J1:1/1 (with short)	600(In) 489(Out)								
J1:1/2 (short)	111								
J1:2/1	697								
J1:3/1	101								
J1:3/2	84								
J1:4/1	365								
J1:5/1 (short)	254								
J1:5/2 (with short)	850(In) 596(Out)								
Junction: J2: Cromv	well Road/New Bridge lane								
J2:1/1 (with short)	573(In) 567(Out)								
J2:1/2 (short)	6								
J2:2/1	65								
J2:3/1	67								
J2:4/1	636								
J2:5/1 (with short)	903(In) 844(Out)								
J2:5/2 (short)	59								
J2:6/1	19								
J2:7/1	27								

Lane Saturation Flows

Junction: J1: Tesco Junction									
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)	
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915	
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687	
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf			
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679	
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802	
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940	
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705	
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915	

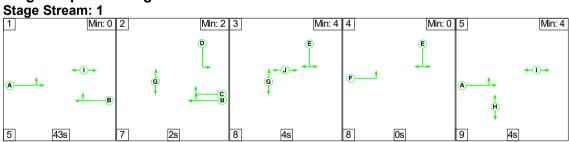
Full Input Data And Results								
Junction: J2: Cromwell Road/	New Bri	dge lane						
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
10.4/4			Y	Arm J2:2 Left	5.44	0.5 %		1937
J2:1/1 (Cromwell Road (WB))	3.25	0.00		Arm J2:4 Ahead	Inf	99.5 %	1937	
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769
J2:2/1 (New Bridge Lane (SB) Lane 1)			Infinite		Inf	Inf		
J2:3/1 (New Bridge lane (NB))				Arm J1:5 Right	23.70	9.0 %		
	3.77	0.00	Y	Arm J2:4 Left	10.77	91.0 %	1759	1759
				Arm J2:6 Ahead	Inf	0.0 %		
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
J2:5/1	3.00	0.00	Y	Arm J1:5 Ahead	Inf	98.5 %	1910	1910
(Cromwell Road(EB))				Arm J2:6 Left	8.10	1.5 %		
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
				Arm J1:5 Left	6.78	48.1 %		
J2:7/1 (New Bridge Lane (SB))	3.74	0.00	Y	Arm J2:2 Ahead	Inf	11.1 %	1741	1741
				Arm J2:4 Right	17.14	40.7 %		

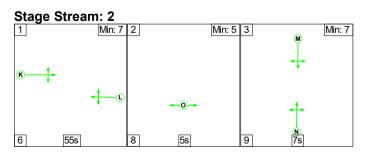
Scenario 6: '2027 Baseline increased by 10% PM Peak' (FG8: '2027 Baseline+10%- PM Peak', Plan 1: 'Network Control Plan 1')
Traffic Flows, Desired

Desired Flow:

		Destination											
		Α	В	С	D	E	Tot.						
	Α	0	65	7	10	24	106						
	В	36	0	21	227	533	817						
Origin	С	7	31	0	8	19	65						
	D	0	50	0	0	54	104						
	Е	4	725	7	50	0	786						
	Tot.	47	871	35	295	630	1878						

Traffic Lane Flows									
Lane	Scenario 6: 2027 Baseline increased by 10% PM Peak								
Junction: J1: Tesco	Junction								
J1:1/1 (with short)	786(In) 736(Out)								
J1:1/2 (short)	50								
J1:2/1	630								
J1:3/1	54								
J1:3/2	50								
J1:4/1	295								
J1:5/1 (short)	245								
J1:5/2 (with short)	821(In) 576(Out)								
Junction: J2: Cromv	vell Road/New Bridge lane								
J2:1/1 (with short)	786(In) 779(Out)								
J2:1/2 (short)	7								
J2:2/1	47								
J2:3/1	106								
J2:4/1	871								
J2:5/1 (with short)	817(In) 781(Out)								
J2:5/2 (short)	36								
J2:6/1	35								
J2:7/1	65								

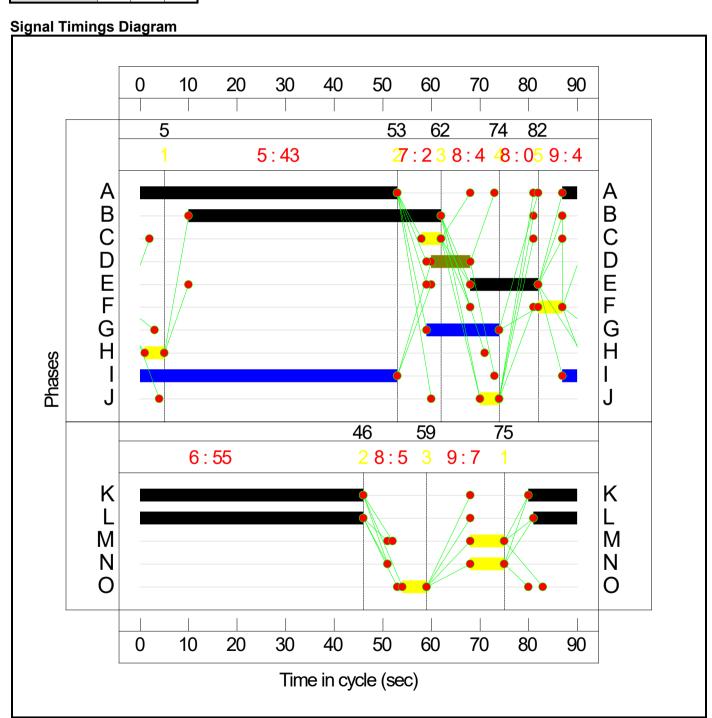

Lane Saturation Flows


Junction: J1: Tesco Junction									
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)	
J1:1/1 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J2:1 Ahead	Inf	100.0 %	1915	1915	
J1:1/2 (Cromwell Rd (WB))	3.00	0.00	Y	Arm J1:4 Right	11.11	100.0 %	1687	1687	
J1:2/1 (Cromwell Rd (EB) Lane 1)			Infinite		Inf	Inf			
J1:3/1 (Tesco Exit)	3.25	0.00	Y	Arm J1:2 Left	9.66	100.0 %	1679	1679	
J1:3/2 (Tesco Exit)	3.25	0.00	Y	Arm J2:1 Right	19.52	100.0 %	1802	1802	
J1:4/1 (Tesco Entrance)	3.25	0.00	Y				1940	1940	
J1:5/1 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:4 Left	12.19	100.0 %	1705	1705	
J1:5/2 (Cromwell Rd (EB))	3.00	0.00	Y	Arm J1:2 Ahead	Inf	100.0 %	1915	1915	

Junction: J2: Cromwell Road/	New Bri	dge lane						
Lane	Lane Width (m)	Gradient	Nearside Lane	Allowed Turns	Turning Radius (m)	Turning Prop.	Sat Flow (PCU/Hr)	Flared Sat Flow (PCU/Hr)
J2:1/1			Y	Arm J2:2 Left	5.44	0.5 %		
(Cromwell Road (WB))	3.25	0.00		Arm J2:4 Ahead	Inf	99.5 %	1937	1937
J2:1/2 (Cromwell Road (WB))	3.25	0.00	Y	Arm J2:6 Right	15.50	100.0 %	1769	1769
J2:2/1 (New Bridge Lane (SB) Lane 1)				Inf	Inf			
J2:3/1 (New Bridge lane (NB))			Y	Arm J1:5 Right	23.70	32.1 %	1802	
	3.77	0.00		Arm J2:4 Left	10.77	61.3 %		1802
				Arm J2:6 Ahead	Inf	6.6 %		
J2:4/1 (Cromwell Road(WB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
J2:5/1	3.00	0.00	Y	Arm J1:5 Ahead	Inf	97.3 %	1906	1906
(Cromwell Road(EB))				Arm J2:6 Left	8.10	2.7 %		
J2:5/2 (Cromwell Road(EB))	3.00	0.00	Y	Arm J2:2 Right	13.03	100.0 %	1717	1717
J2:6/1 (New Bridge Lane(NB) Lane 1)			Infinite	Saturation Flow			Inf	Inf
J2:7/1 (New Bridge Lane (SB))		3.74 0.00	Y	Arm J1:5 Left	6.78	41.5 %	1755	
	3.74			Arm J2:2 Ahead	Inf	10.8 %		1755
				Arm J2:4 Right	17.14	47.7 %		

Scenario 1: '2027 Base+Development AM Peak' (FG1: '2027 Development flows- AM Peak', Plan 1: 'Network Control Plan 1')

Stage Sequence Diagram



Stage Timings Stage Stream: 1

Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	5	53	62	74	82

Stage Stream: 2

Stage	1	2	3
Duration	55	5	7
Change Point	75	46	59

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	68.3%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	62.5%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	545	1915:1687	927+211	47.9 : 47.9%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	634	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	Е	D	1	22	8	92	1679	429	21.4%
3/2	Tesco Exit Right	U	1	N/A	E		1	14	-	77	1802	300	25.6%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	331	1940	1940	17.1%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	Α	F	1	56:61	5	772	1915:1705	867+368	62.5 : 62.5%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	I		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	68.3%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	55	-	521	1937:1769	1204+12	42.8 : 42.8%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	60	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	0	2	N/A	N		1	7	-	60	1758	156	38.4%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	578	Inf	Inf	0.0%

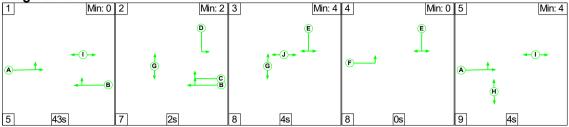
5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	56	-	821	1909:1717	1123+79	68.3 : 68.3%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	17	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	7	-	25	1743	155	16.1%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Junction Upgrading	-	-	74	98	3	7.4	3.6	0.1	11.0	-	-	-	-
J1: Tesco Junction	-	-	0	98	3	3.0	1.7	0.0	4.7	-	-	-	-
1/1+1/2	545	545	0	98	3	1.5	0.5	0.0	2.0	12.9	6.6	0.5	7.1
2/1	634	634	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	92	92	-	-	-	0.7	0.1	-	0.8	31.7	1.8	0.1	1.9
3/2	77	77	-	-	-	0.7	0.2	-	0.9	40.7	1.7	0.2	1.8
4/1	331	331	-	-	-	0.0	0.1	-	0.1	1.1	1.1	0.1	1.2
5/2+5/1	772	772	-	-	-	0.2	0.8	-	1.0	4.6	0.7	0.8	1.5
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
J2: Cromwell Road/New Bridge lane	-	-	74	0	0	4.3	1.9	0.1	6.2	-	-	-	-
1/1+1/2	521	521	5	0	0	1.0	0.4	0.0	1.4	9.7	5.0	0.4	5.4
2/1	60	60	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	60	60	5	0	0	0.6	0.3	0.0	1.0	57.3	1.4	0.3	1.7
4/1	578	578	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1+5/2	821	821	54	0	0	2.4	1.1	0.0	3.5	15.4	13.0	1.1	14.1
6/1	17	17	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	25	25	10	0	0	0.3	0.1	0.0	0.4	52.9	0.6	0.1	0.7
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
			am: 2 PRC for Sig	nalled Lanes (%): nalled Lanes (%):	44.0 31.8	Total Delay for	Signalled Lanes Signalled Lanes	(pcuHr): 6.25	Cycle	Time (s): 90 Time (s): 90	•	-	

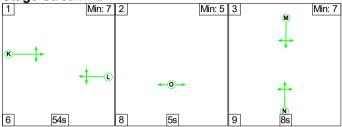
C1 Stream: 2 PRC for Signalled Lanes (%):
PRC Over All Lanes (%):

31.8

Total Delay for Signalled Lanes (pcuHr):
Total Delay Over All Lanes(pcuHr):


6.25 10.98

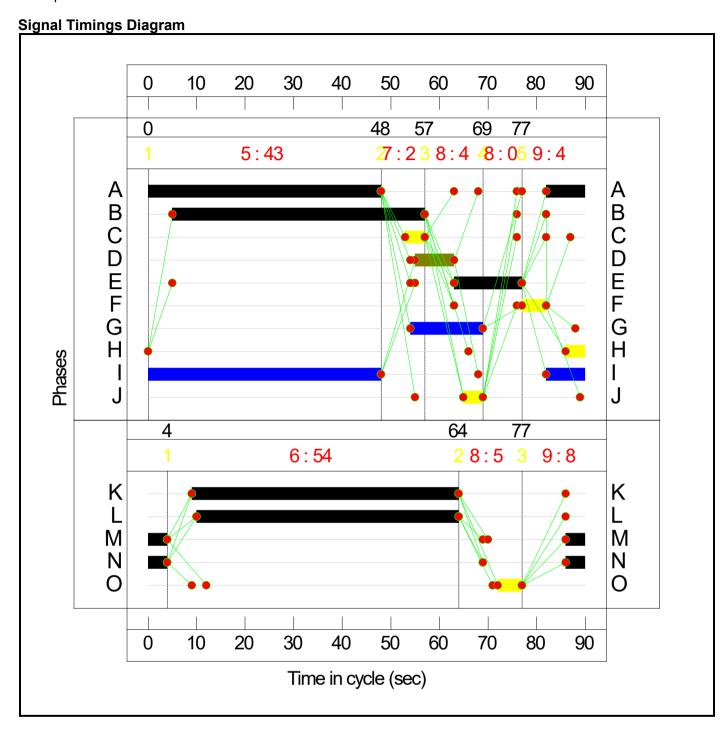
Scenario 2: '2027 Base+Development PM Peak' (FG2: '2027 Development flows PM Peak', Plan 1: 'Network

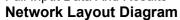

Control Plan 1')

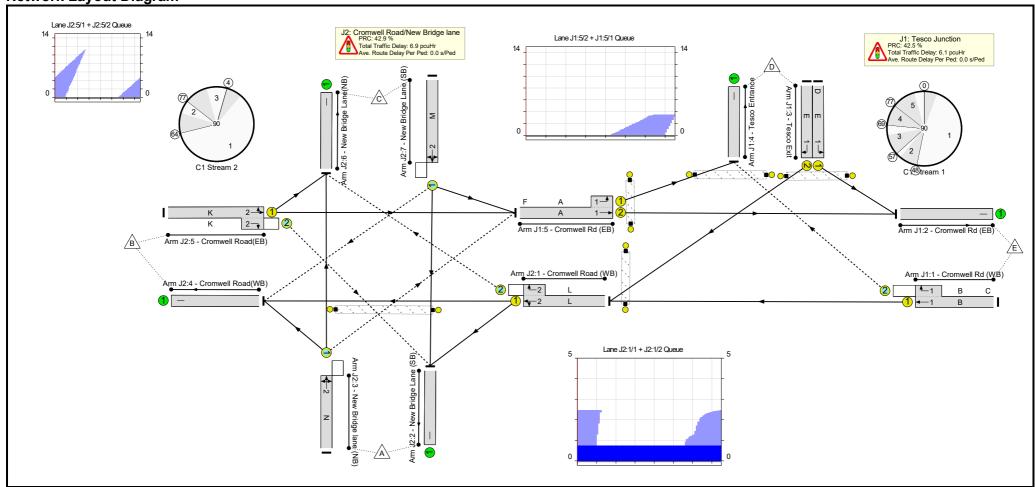
Stage Sequence Diagram

Stage Stream: 1

Stage Stream: 2




Stage Timings Stage Stream: 1


Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	0	48	57	69	77

Stage Stream: 2

Stage	1	2	3
Duration	54	5	8
Change Point	4	64	77

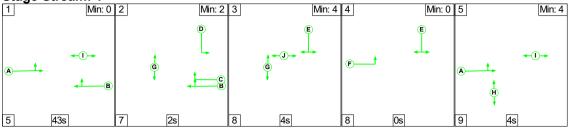
Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	63.1%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	63.1%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	714	1915:1687	1060+71	63.1 : 63.1%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	573	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	Е	D	1	22	8	49	1679	429	11.4%
3/2	Tesco Exit Right	U	1	N/A	E		1	14	-	46	1802	300	15.3%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	267	1940	1940	13.8%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	А	F	1	56:61	5	746	1915:1705	868+368	60.4 : 60.4%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	1		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	63.0%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	54	-	715	1937:1769	1184+10	59.9 : 59.9%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	43	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	О	2	N/A	N		1	8	-	96	1801	180	53.3%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	792	Inf	Inf	0.0%

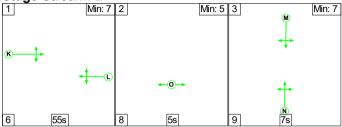
5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	55	-	743	1906:1717	1127+52	63.0 : 63.0%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	31	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	8	-	58	1754	175	33.1%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Junction Upgrading	-	-	98	44	2	8.6	4.2	0.1	13.0	-	-	-	-
J1: Tesco Junction	-	-	0	44	2	4.3	1.8	0.0	6.1	-	-	-	-
1/1+1/2	714	714	0	44	2	2.3	0.9	0.0	3.2	16.1	11.3	0.9	12.1
2/1	573	573	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	49	49	-	-	-	0.3	0.1	-	0.4	30.4	0.9	0.1	1.0
3/2	46	46	-	-	-	0.4	0.1	-	0.5	39.1	1.0	0.1	1.1
4/1	267	267	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
5/2+5/1	746	746	-	-	-	1.2	0.8	-	1.9	9.3	3.5	0.8	4.3
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
J2: Cromwell Road/New Bridge lane	-	-	98	0	0	4.4	2.4	0.1	6.9	-	-	-	-
1/1+1/2	715	715	6	0	0	0.6	0.7	0.0	1.3	6.6	1.7	0.7	2.5
2/1	43	43	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	96	96	31	0	0	1.0	0.6	0.0	1.6	59.7	2.3	0.6	2.8
4/1	792	792	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1+5/2	743	743	33	0	0	2.2	0.8	0.1	3.1	15.0	11.2	0.8	12.1
6/1	31	31	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	58	58	28	0	0	0.6	0.2	0.0	0.9	54.4	1.3	0.2	1.6
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
			m: 2 PRC for Sig	nalled Lanes (%): lnalled Lanes (%): er All Lanes (%):	42.5 42.9 42.5	Total Delay for	Signalled Lanes Signalled Lanes	(pcuHr): 6.87	Cycle	Time (s): 90 Time (s): 90		-	

C1 Stream: 1 PRC for Signalled Lanes (%):
C1 Stream: 2 PRC for Signalled Lanes (%):
PRC Over All Lanes (%):


42.5

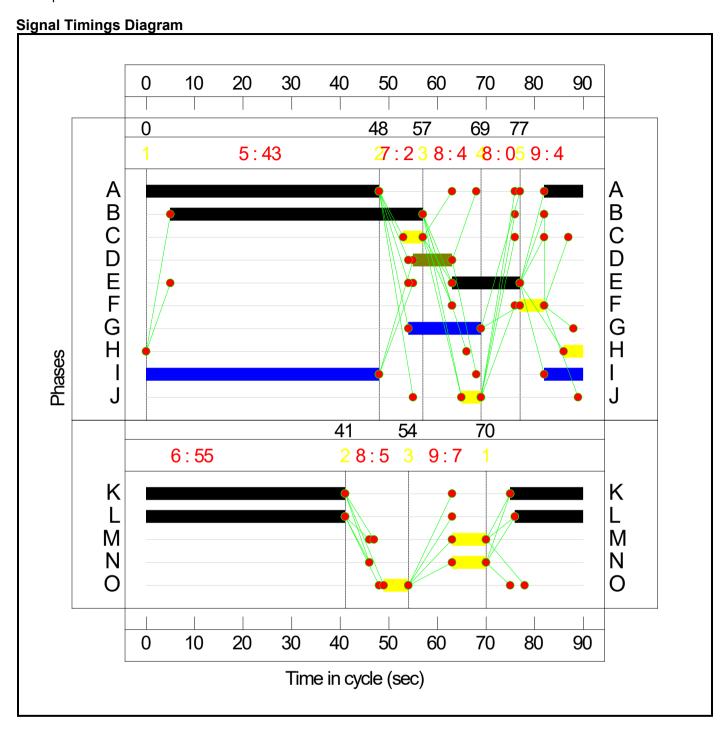
Total Delay for Signalled Lanes (pcuHr): Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):

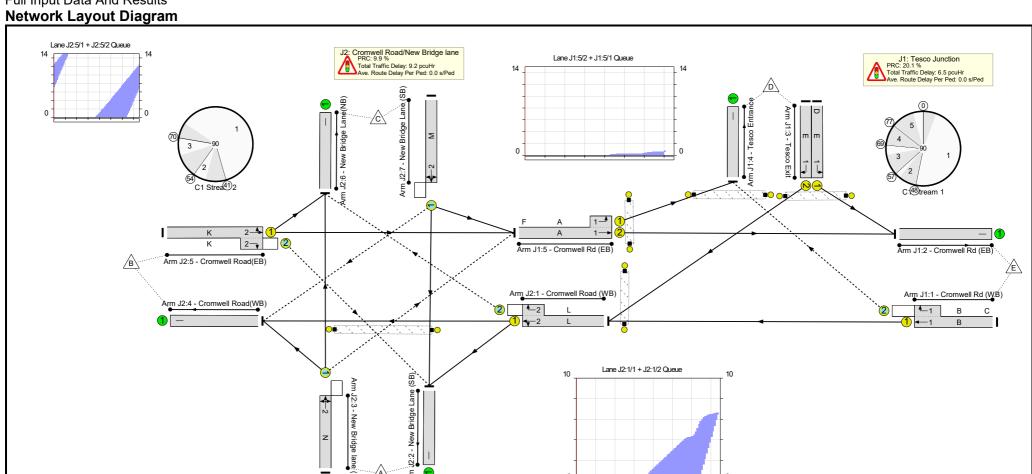

Scenario 3: '2027 Baseline Increased by 20% AM Peak' (FG5: '2027 Baseline +20%-AM Peak', Plan 1: 'Network Control Plan 1')

Stage Sequence Diagram

Stage Stream: 1

Stage Stream: 2




Stage Timings Stage Stream: 1

Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	0	48	57	69	77

Stage Stream: 2

Stage Stream.			-
Stage	1	2	3
Duration	55	5	7
Change Point	70	41	54

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	81.9%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	75.0%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	655	1915:1687	926+212	57.5 : 57.5%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	761	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	Е	D	1	22	8	111	1679	429	25.9%
3/2	Tesco Exit Right	U	1	N/A	E		1	14	-	93	1802	300	31.0%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	398	1940	1940	20.5%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	A	F	1	56:61	5	926	1915:1705	867+368	75.0 : 75.0%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	I		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	81.9%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	55	-	626	1937:1769	1204+12	51.5 : 51.5%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	73	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	0	2	N/A	N		1	7	-	72	1758	156	46.1%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	694	Inf	Inf	0.0%

5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	56	-	985	1910:1717	1123+79	81.9 : 81.9%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	20	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	7	-	30	1747	155	19.3%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Junction Upgrading	-	-	89	118	4	9.6	6.0	0.1	15.7	-	-	-	-
J1: Tesco Junction	-	-	0	118	4	3.8	2.7	0.0	6.5	-	-	-	-
1/1+1/2	655	655	0	118	4	2.0	0.7	0.0	2.6	14.4	9.0	0.7	9.7
2/1	761	761	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	111	111	-	-	-	0.8	0.2	-	1.0	32.4	2.2	0.2	2.4
3/2	93	93	-	-	-	0.9	0.2	-	1.1	41.6	2.0	0.2	2.3
4/1	398	398	-	-	-	0.0	0.1	-	0.1	1.2	1.1	0.1	1.2
5/2+5/1	926	926	-	-	-	0.2	1.5	-	1.7	6.5	0.8	1.5	2.3
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
J2: Cromwell Road/New Bridge lane	-	-	89	0	0	5.8	3.3	0.1	9.2	-	-	-	-
1/1+1/2	626	626	6	0	0	1.3	0.5	0.0	1.8	10.5	6.1	0.5	6.6
2/1	73	73	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	72	72	6	0	0	0.8	0.4	0.0	1.2	60.1	1.7	0.4	2.1
4/1	694	694	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1+5/2	985	985	65	0	0	3.4	2.2	0.1	5.7	20.9	18.4	2.2	20.6
6/1	20	20	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	30	30	12	0	0	0.3	0.1	0.0	0.4	53.6	0.7	0.1	0.8
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-

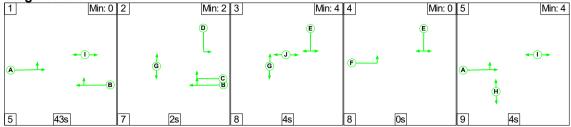
C1 Stream: 1 PRC for Signalled Lanes (%):
C1 Stream: 2 PRC for Signalled Lanes (%):
PRC Over All Lanes (%):

9.9

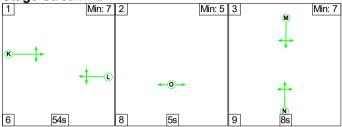
9.9

9.20

15.70


Total Delay for Signalled Lanes (pcuHr): Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):

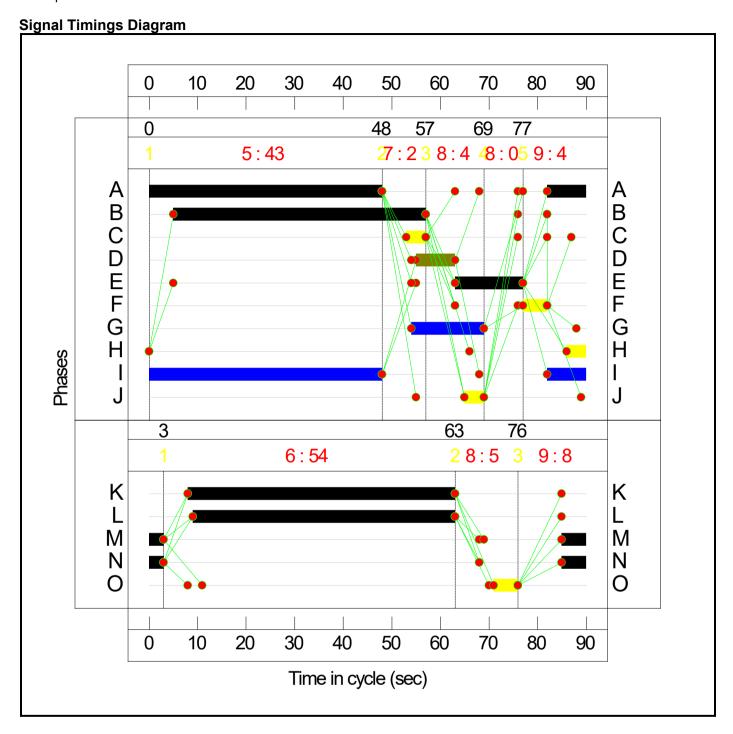
Cycle Time (s): 90 Cycle Time (s): 90

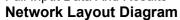

Scenario 4: '2027 Baseline Increased by 20% PM Peak' (FG6: '2027 Baseline +20%- PM Peak', Plan 1: 'Network Control Plan 1')

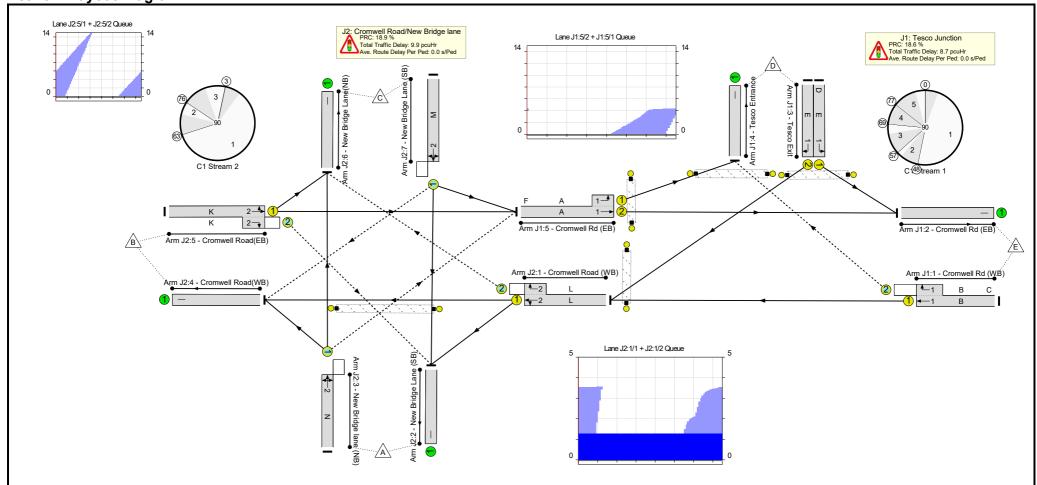
Stage Sequence Diagram

Stage Stream: 1

Stage Stream: 2




Stage Timings Stage Stream: 1


Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	0	48	57	69	77

Stage Stream: 2

otage otream.	. 4		
Stage	1	2	3
Duration	54	5	8
Change Point	3	63	76

Network Results

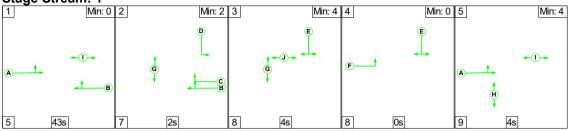
Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	75.9%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	75.9%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	858	1915:1687	1060+71	75.9 : 75.9%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	686	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	E	D	1	22	8	58	1679	429	13.5%
3/2	Tesco Exit Right	U	1	N/A	E		1	14	-	56	1802	300	18.6%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	321	1940	1940	16.5%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	А	F	1	56:61	5	895	1915:1705	867+369	72.4 : 72.4%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	1		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	75.7%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	54	-	860	1937:1769	1182+12	72.0 : 72.0%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	52	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	О	2	N/A	N		1	8	-	115	1801	180	63.9%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	951	Inf	Inf	0.0%

5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	55	-	892	1905:1717	1126+53	75.7 : 75.7%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	39	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	8	-	70	1754	175	39.9%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

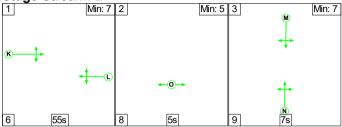
- 858 686 58 56	- 858 686 58	120 0 0	52	2	11.3	7.2	0.2	18.7	_	_		
858 686 58 56	686	0		2						-	-	-
58 58 56	686				5.6	3.2	0.0	8.7	-	-	-	-
58 56			52	2	3.2	1.6	0.0	4.8	20.0	15.5	1.6	17.0
56	52	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
	50	-	-	-	0.4	0.1	-	0.5	30.7	1.1	0.1	1.2
	56	-	-	-	0.5	0.1	-	0.6	39.7	1.2	0.1	1.3
321	321	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
895	895	-	-	-	1.4	1.3	-	2.8	11.1	4.3	1.3	5.6
0	0	-	-	-	-	-	-	-	-	-	-	-
0	0	-	-	-	-	-	-	-	-	-	-	-
0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
0	0	-	-	-	-	-	-	-	-	-	-	-
-	-	120	0	0	5.7	4.0	0.2	9.9	-	-	-	-
860	860	9	0	0	0.7	1.3	0.0	2.0	8.6	2.3	1.3	3.6
52	52	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
115	115	37	0	0	1.2	0.9	0.0	2.1	66.0	2.7	0.9	3.6
951	951	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
892	892	40	0	0	3.0	1.5	0.1	4.7	18.9	15.7	1.5	17.3
39	39	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
70	70	34	0	0	0.7	0.3	0.0	1.1	56.8	1.6	0.3	2.0
0	0	-	-	-	-	-	-	-	-	-	-	-
	0 - 860 52 115 951 892 39 70 0	0 0	0 0 - - 120 860 860 9 52 52 - 115 115 37 951 951 - 892 892 40 39 39 - 70 70 34 0 0 - C1 Stream: 1 PRC for Sig	0 0 - 120 0 860 860 9 0 52 52 115 115 37 0 951 951 892 892 40 0 39 39 70 70 34 0 0 0 C1 Stream: 1 PRC for Signalled Lanes (%):	0 0 - - - - - - 120 0 0 860 860 9 0 0 52 52 - - - 115 115 37 0 0 951 951 - - - 892 892 40 0 0 39 39 - - - 70 70 34 0 0 0 0 - - - C1 Stream: 1 PRC for Signalled Lanes (%): 18.6	0 0 - - - - - - - 120 0 0 5.7 860 860 9 0 0 0.7 52 52 - - - 0.0 115 115 37 0 0 1.2 951 951 - - - 0.0 892 892 40 0 0 3.0 39 39 - - - 0.0 70 70 34 0 0 0.7 0 0 - - - -	0 0 - - - - - - - - - 120 0 0 5.7 4.0 860 860 9 0 0 0.7 1.3 52 52 - - - 0.0 0.0 115 115 37 0 0 1.2 0.9 951 951 - - - 0.0 0.0 892 892 40 0 0 3.0 1.5 39 39 - - - 0.0 0.0 70 70 34 0 0 0.7 0.3 0 0 - - - - - -	0 0 -	0 0 - 0.0 0.0 - 0.0 2.0 2.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 2.1 0.0 0.0 2.1 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 - 0.0 0.0 0.0 - 0.0	0 0 -	0 0 -	0 0 -

C1 Stream: 1 PRC for Signalled Lanes (%): C1 Stream: 2 PRC for Signalled Lanes (%): PRC Over All Lanes (%):

18.6


Total Delay for Signalled Lanes (pcuHr): Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):

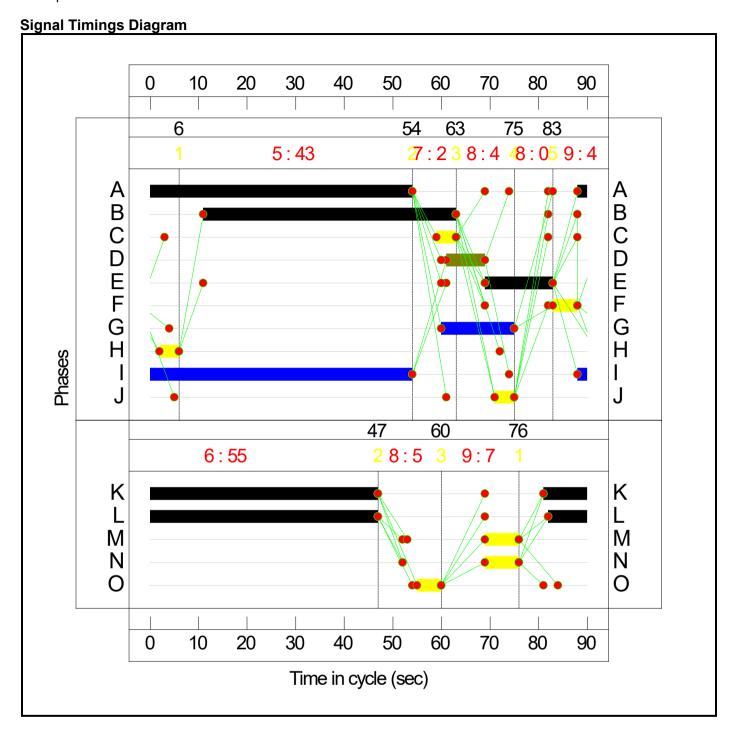
Cycle Time (s): 90 Cycle Time (s): 90 9.94 18.67

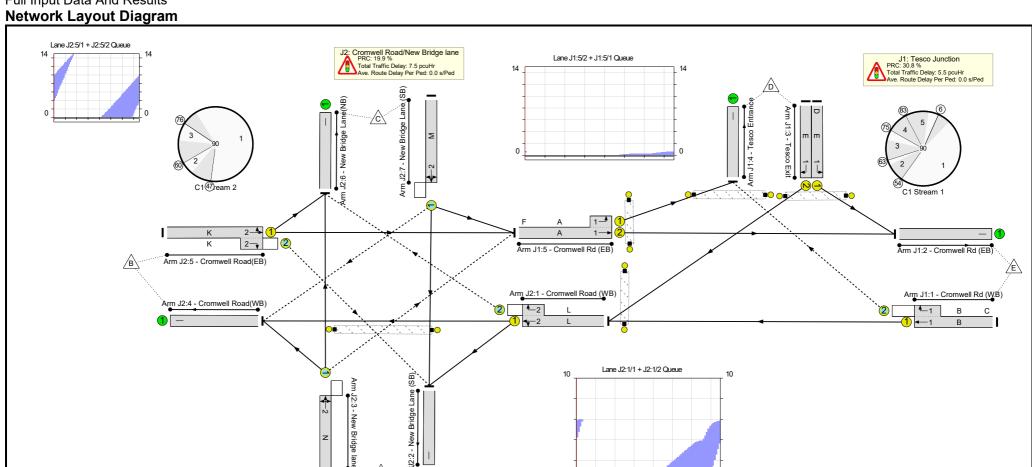

Scenario 5: '2027 Baseline increased by 10% AM Peak' (FG7: '2027 Baseline +10%- AM Peak', Plan 1: 'Network Control Plan 1')

Stage Sequence Diagram

Stage Stream: 1

Stage Stream: 2




Stage Timings Stage Stream: 1

Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	6	54	63	75	83

Stage Stream: 2

Stage	1	2	3
Duration	55	5	7
Change Point	76	47	60

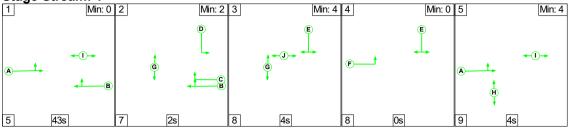
Network Results

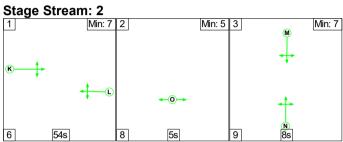
Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	75.1%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	68.8%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	600	1915:1687	928+211	52.7 : 52.7%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	697	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	Е	D	1	22	8	101	1679	429	23.5%
3/2	Tesco Exit Right	U	1	N/A	Е		1	14	-	84	1802	300	28.0%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	365	1940	1940	18.8%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	A	F	1	56:61	5	850	1915:1705	866+369	68.8 : 68.8%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	1		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	75.1%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	55	-	573	1937:1769	1203+13	47.1 : 47.1%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	65	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	О	2	N/A	N		1	7	-	67	1759	156	42.9%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	636	Inf	Inf	0.0%

5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	56	-	903	1910:1717	1124+79	75.1 : 75.1%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	19	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	7	-	27	1741	155	17.4%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Junction Upgrading	-	-	82	107	4	8.4	4.5	0.1	13.0	-	-	-	-
J1: Tesco Junction	-	-	0	107	4	3.4	2.1	0.0	5.5	-	-	-	-
1/1+1/2	600	600	0	107	4	1.7	0.6	0.0	2.3	13.6	7.7	0.6	8.3
2/1	697	697	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	101	101	-	-	-	0.7	0.2	-	0.9	32.0	2.0	0.2	2.1
3/2	84	84	-	-	-	0.8	0.2	-	1.0	41.1	1.8	0.2	2.0
4/1	365	365	-	-	-	0.0	0.1	-	0.1	1.2	1.1	0.1	1.2
5/2+5/1	850	850	-	-	-	0.2	1.1	-	1.3	5.4	0.7	1.1	1.8
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
J2: Cromwell Road/New Bridge lane	-	-	82	0	0	5.0	2.4	0.1	7.5	-	-	-	-
1/1+1/2	573	573	6	0	0	1.2	0.4	0.0	1.6	10.1	5.5	0.4	6.0
2/1	65	65	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	67	67	6	0	0	0.7	0.4	0.0	1.1	58.8	1.6	0.4	2.0
4/1	636	636	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1+5/2	903	903	59	0	0	2.9	1.5	0.1	4.4	17.6	15.3	1.5	16.8
6/1	19	19	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	27	27	11	0	0	0.3	0.1	0.0	0.4	53.1	0.6	0.1	0.7
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
			m: 2 PRC for Sig	nalled Lanes (%): nalled Lanes (%): er All Lanes (%):	30.8 19.9 19.9	Total Delay for	Signalled Lanes Signalled Lanes ay Over All Lanes	(pcuHr): 7.52	Cycle	Time (s): 90 Time (s): 90	-	-	

C1 Stream: 1 PRC for Signalled Lanes (%):
PRC Over All Lanes (%):

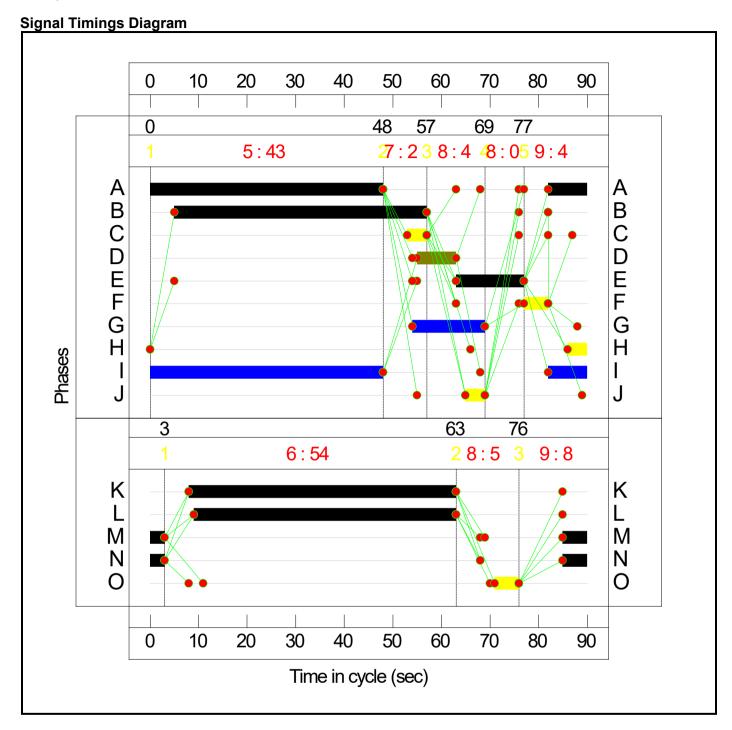

Total Delay for Signalled Lanes (pcuHr):
Total Delay Over All Lanes(pcuHr):

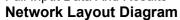

Cycle Time (s): 90

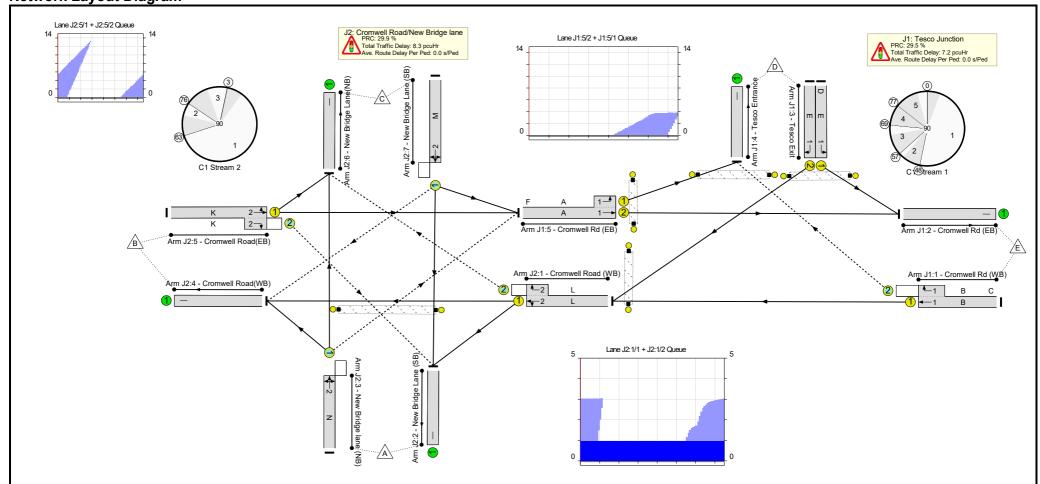
Scenario 6: '2027 Baseline increased by 10% PM Peak' (FG8: '2027 Baseline+10%- PM Peak', Plan 1: 'Network Control Plan 1')

Stage Sequence Diagram

Stage Stream: 1




Stage Timings Stage Stream: 1


Stage	1	2	3	4	5
Duration	43	2	4	0	4
Change Point	0	48	57	69	77

Stage Stream: 2

Stage	1	2	3
Duration	54	5	8
Change Point	3	63	76

Network Results

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)
Network: Junction Upgrading	-	-	N/A	-	-		-	-	-	-	-	-	69.5%
J1: Tesco Junction	-	-	N/A	-	-		-	-	-	-	-	-	69.5%
1/1+1/2	Cromwell Rd (WB) Right Ahead	U+O	1	N/A	В	С	1	52	4	786	1915:1687	1059+72	69.5 : 69.5%
2/1	Cromwell Rd (EB)	U	N/A	N/A	-		-	-	-	630	Inf	Inf	0.0%
3/1	Tesco Exit Left	U	1	N/A	Е	D	1	22	8	54	1679	429	12.6%
3/2	Tesco Exit Right	U	1	N/A	E		1	14	-	50	1802	300	16.6%
4/1	Tesco Entrance	U	N/A	N/A	-		-	-	-	295	1940	1940	15.2%
5/2+5/1	Cromwell Rd (EB) Ahead Left	U	1	N/A	A	F	1	56:61	5	821	1915:1705	867+369	66.5 : 66.5%
Ped Link: P1	Tesco Entrance	-	1	-	J		1	4	-	0	-	0	0.0%
Ped Link: P2	Tesco Exit	-	1	-	1		1	56	-	0	-	0	0.0%
Ped Link: P3	Cromwell Road EB	-	-	-			0	0	-	0	-	0	0.0%
Ped Link: P4	Cromwell Road NB	-	1	-	Н		1	4	-	0	-	0	0.0%
J2: Cromwell Road/New Bridge lane	-	-	N/A	-	-		-	-	-	-	-	-	69.3%
1/1+1/2	Cromwell Road (WB) Left Ahead Right	U+O	2	N/A	L		1	54	-	786	1937:1769	1184+11	65.8 : 65.8%
2/1	New Bridge Lane (SB)	U	N/A	N/A	-		-	-	-	47	Inf	Inf	0.0%
3/1	New Bridge lane (NB) Right Left Ahead	О	2	N/A	N		1	8	-	106	1802	180	58.8%
4/1	Cromwell Road(WB)	U	N/A	N/A	-		-	-	-	871	Inf	Inf	0.0%

5/1+5/2	Cromwell Road(EB) Ahead Right Left	U+O	2	N/A	К	1	55	-	817	1906:1717	1127+52	69.3 : 69.3%
6/1	New Bridge Lane(NB)	U	N/A	N/A	-	-	-	-	35	Inf	Inf	0.0%
7/1	New Bridge Lane (SB) Left Ahead Right	0	2	N/A	М	1	8	-	65	1755	176	37.0%
Ped Link: P1	New Bridge Lane Crossing	-	2	-	0	1	5	-	0	-	0	0.0%

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Junction Upgrading	-	-	108	48	2	9.9	5.5	0.1	15.5	-	-	-	-
J1: Tesco Junction	-	-	0	48	2	4.9	2.4	0.0	7.2	-	-	-	-
1/1+1/2	786	786	0	48	2	2.7	1.1	0.0	3.9	17.8	13.3	1.1	14.4
2/1	630	630	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	54	54	-	-	-	0.4	0.1	-	0.5	30.6	1.0	0.1	1.1
3/2	50	50	-	-	-	0.4	0.1	-	0.5	39.3	1.1	0.1	1.2
4/1	295	295	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
5/2+5/1	821	821	-	-	-	1.3	1.0	-	2.3	9.9	3.8	1.0	4.8
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	Inf	Inf	-	-	Inf
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
J2: Cromwell Road/New Bridge lane	-	-	108	0	0	5.1	3.1	0.1	8.3	-	-	-	-
1/1+1/2	786	786	7	0	0	0.7	1.0	0.0	1.6	7.5	2.1	1.0	3.0
2/1	47	47	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
3/1	106	106	34	0	0	1.1	0.7	0.0	1.8	62.6	2.5	0.7	3.2
4/1	871	871	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
5/1+5/2	817	817	36	0	0	2.6	1.1	0.1	3.8	16.6	13.3	1.1	14.4
6/1	35	35	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	65	65	31	0	0	0.7	0.3	0.0	1.0	55.7	1.5	0.3	1.8
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-

C1 Stream: 1 PRC for Signalled Lanes (%):
C1 Stream: 2 PRC for Signalled Lanes (%):
PRC Over All Lanes (%):

29.9

29.5

8.27

15.50

Total Delay for Signalled Lanes (pcuHr): Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):

Cycle Time (s): 90 Cycle Time (s): 90

Appendix B Stage 1 RSA Brief

Medworth Energy from Waste Combined Heat and Power Facility DCO

Stage 1 - RSA brief

1. Project Summary

Date:	04/05/23
Document reference:	41310-WOOD-XX-XX-RP-OT-0003_S0_P01
Prepared by:	WSP
On behalf of:	Medworth CHP Limited
AUTHORISATION SHEET	
Project:	Medworth Energy from Waste Combined Heat and Power Facility DCO
Report title:	RSA brief- Stage 1
PREPARED BY:	
Name:	Varsha Suresh
Signed:	
Organisation:	WSP
Date:	04/05/23
I APPROVE THE RSA BRIEF AND INSTRU OF THE OVERSEEING ORGANISATION:	JCT THE RSA TO TAKE PLACE ON BEHALF
Name:	Nigel Eggar
Signed:	
Organisation:	Cambridgeshire County Council
Date:	10/05/23

1.1 General Details

Highway scheme name and	d road	Medworth Energy from Waste Combined Heat and Power Facility DCO					
Type of scheme:	Upgra juncti	ading Junction on.	from priority ju	nction to signa	alised		
RSA stage tick as appropri	ate.	1- 🗸	2	3	4		
			Interim				
Overseeing Organisation d	etails		Design orga	nisation detai	ils		
Cambridgeshire County Council		WSP (UK)					
West Highway Division Stanton Way Ermine Street Huntingdon PE29 6PY		Amber Court William Armstrong Dr, Newcastle upon Tyne NE4 7YA					
			Maintaining	agent contac	t details		
(Required for stage 3 RSAs	s)		N/A				
RSA team membership							
Insert details of the approvement where appropriate.	ed RS	A team and a	ny specialist a	dvisors and o	observers		
Terms of reference							

2. Analysis

Scheme description/objective

General

Scheme Description

During the Development Consent Order process for the Medworth Energy from Waste (EfW) and Combined Heat and Power (CHP) facility, Cambridgeshire County Council has requested that the B198 Cromwell Road/New Bridge Lane junction – located within Wisbech – is upgraded to a four arm signalised junction to ensure that additional HGV traffic which is expected to be generated by the development is sufficiently accommodated within the B198/New Bridge Lane junction and protected from conflicting traffic movements.

The B198/New Bridge Lane junction is located in the south-west of the town of Wisbech. South of the junction the B198 routes to the A47, north of the junction the B198 routes into the commercial centre of Wisbech town. The New Bridge Lane west arm provides access to a small number of residential properties and access for deliveries into the Tesco supermarket. The New Bridge Lane east arm currently provides access to residential and industrial land uses and will be upgraded as part of the development to provide access into the proposed site.

Currently the B198 Cromwell Road/New Bridge Lane junction is a four-arm priority junction where the New Bridge Lane East and West arms are the minor arms of the junction which give way to the major arm the B198 Cromwell Road. Right turn bays are provided mid junction to facilitate movement from B198 into the New Bridge Lane east and west arms.

The proposed scheme will upgrade the junction into a four arm signalised junction where all necessary infrastructure and works will be undertaken to accommodate traffic signal infrastructure and anticipated movements. This will include the following:

- Provision of stop lines and primary and secondary traffic signal columns on all arms of the junction;
- Realignment of the kerbs throughout the junction to accommodate additional lanes and the swept path of anticipated HGV movements;
- Provision of islands within the junction to accommodate traffic signal columns and protect movements;
- Provision of signalised right turns with right turn only lanes and right turn road markings mid junction;
- Provision of a signalised pedestrian crossing over New Bridge Lane east arm; and
- Provision of all necessary road markings to ensure clear guidance to vehicles.

The proposed New Bridge Lane traffic signal junction is proposed to be linked to the existing Tesco traffic signal junction.

The Scheme also proposes alterations along New Bridge Lane to widen it to 6.8m wide to accommodate HGV movements generated by the proposed Medworth Site.

Included in the **DCO application** is a proposal to reopen New Bridge Lane across the disused March to Wisbech Railway, with the agreement of Network Rail, and that it is this reopening which enables the Applicant to take access from Cromwell Road into the proposed

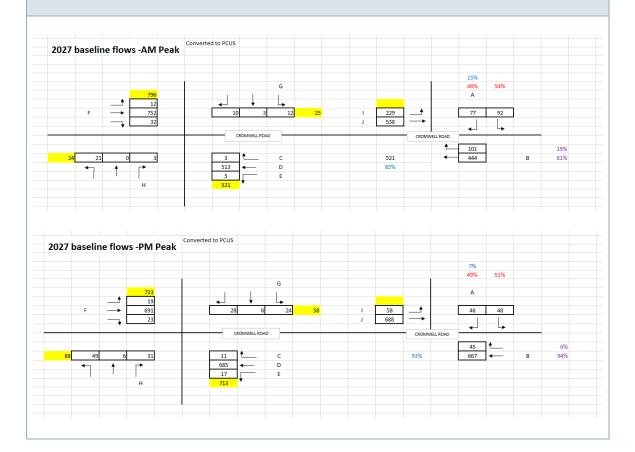
site access. Also that New Bridge Lane will be closed east of the proposed site access and that as such it will not operate as a through route.

Design standards applied to the scheme design

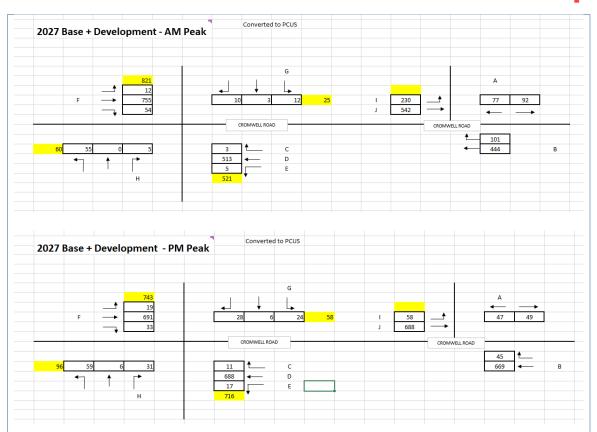
- 1. Standard Specification for Traffic Systems and Signals Cambridgeshire County Council.
- 2. Traffic Signs Manual -Chapter 6.
- 3. Traffic Signs Manual Chapter 5.

Design speeds

70kph/40mph


Speed limits – Existing speed limit of the Cromwell Road is 40mph.

No speed data is available


Existing traffic flows/queues

N/A

Forecast traffic flows

Pedestrians, cyclists, and equestrians desire lines

There is an existing footway along the eastern side of Cromwell Road which continues to New Bridge Lane until it stops approximately at the junction with Salters Way. There is also an existing footway along the northern side of New Bridge Lane connects New Bridge Lane with the existing signalised crossings at the Tesco traffic signal junction.

There is no existing footway on the western side of Cromwell Road.

The current speed limit of New Bridge Lane is proposed to be reduced to 30mph. New Bridge Lane is subject to a national speed limit currently. The proposal for New Bridge Lane also includes new footway along the northern side of New Bridge Lane to provide a continuous walking route between the Site and the proposed new pedestrian crossing at the New Bridge Lane junction. Dropped kerbs and tactile paving will be provided for the proposed new uncontrolled crossing on Salters Way, the site access and the controlled crossing on New Bridge Lane approach.

Environmental constraints

N/A

3. Collision Data Analysis

Collision data analysis

Accident Data for last 4 years

- Accident data has been extracted from the Cambridgeshire Insight Open Data website for the last four years (2019-2023).
- The area of the study is indicated by the blue hatching in Figure 3.1 which includes a section of New Bridge Lane and the B198 Cromwell Road.

Figure 3.1 Illustration of accident study boundary

Source: Google Maps

- Accident data obtained shows that there were both slight and serious accidents within the search area. No fatal accidents were recorded. The accident data is summarised below and shown in Figure 3.2.
- Over the four-year period there were 7 accidents recorded. Of the 7 accidents that are recorded within in the assessment area, five were of slight severity and the remaining two were serious.

ACCIDENT DATA(2019-2023)

P

Serious
Slight

Figure Angle Community

Angle

Figure 1.2 Accident data illustration

Source: Cambridgeshire Road Traffic Collision Data | Cambridgeshire Insight Open Data)

Departures from standards

N/A

Previous road safety audit stage reports, road safety audit response reports and evidence of agreed actions

N/A

Strategic decisions

N/A

List of included documents and drawings

New Bridge Lane Access Proposal, Sheet 1: 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 New Bridge Lane Access Proposal, Sheet 2: 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 Cromwell Road/ New Bridge Lane General Arrangement: 41310-WOOD-XX-XX-DR-OT-0029_S0_P01

Cromwell Road/ New Bridge Lane Swept Path: 41310-WOOD-XX-XX-DR-OT-0030_S0_P01 New Supermarket Access Cromwell Road Proposed Traffic Signals: AT13012-01 Rev B

3.2 Checklist of Information Provided

Tick all that are provided			
Site location plan	✓	Scale layout plans	√
Departures and relaxations from standards		Construction/ typical details	√
Previous RSA reports		Previous RSA response reports and evidence of agreed actions	
Collision data and collision data analysis	✓	Road traffic collision plot	✓
Traffic signal staging (Tesco junction)	✓	Traffic counts	✓
Speed surveys		Pedestrians, cyclist and horse-riding desire lines and volumes	
Walking, cycling and horse-riding assessment and reviews		Items outside the scope of the RSA/ strategic decisions	
Other factors that may impact on road safety	√	Design speeds/ speed limits	✓
Design standards used	✓	Adjacent land uses	√

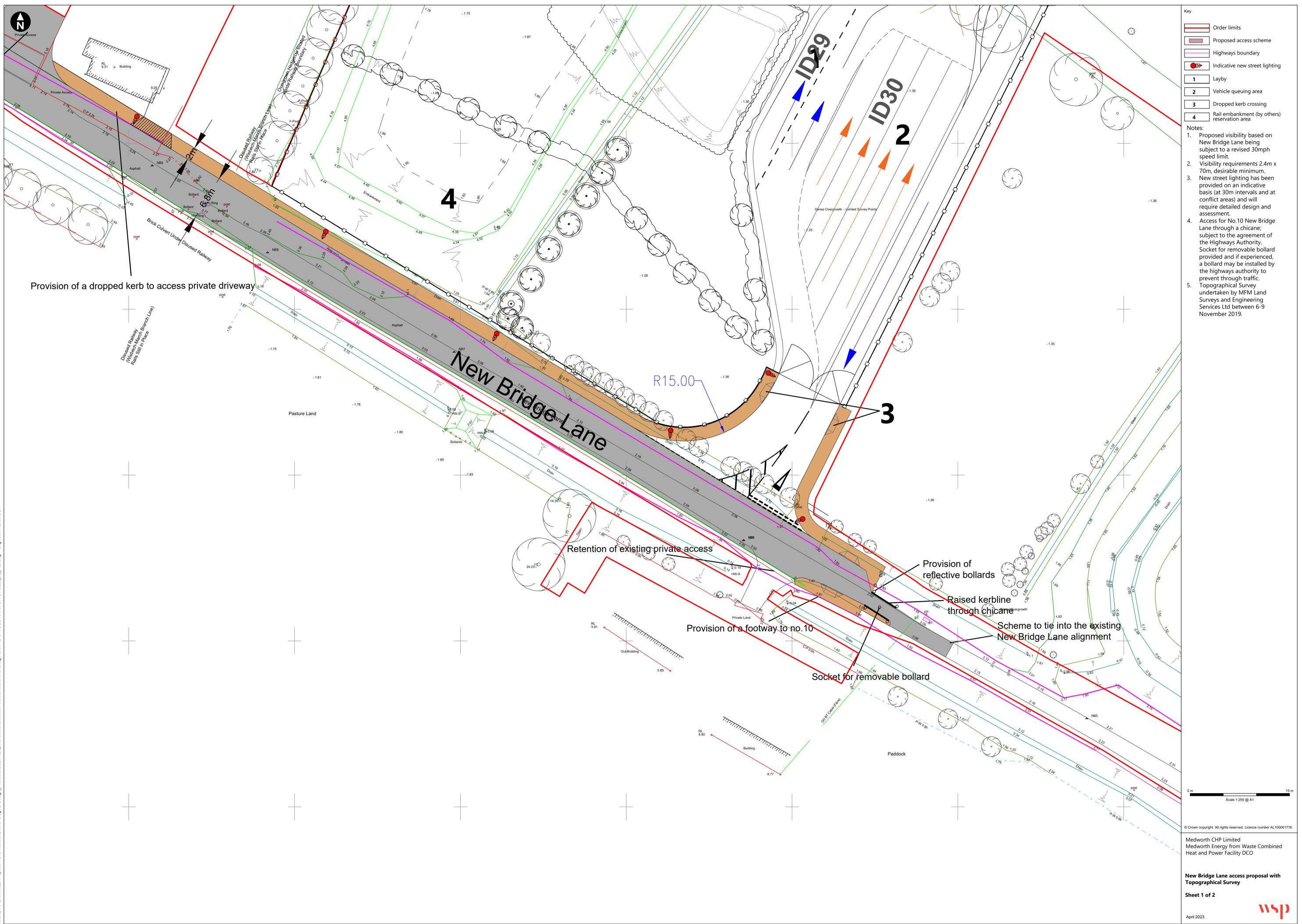
Issued by			
Varsha Suresh			
Varsha Suresh Adam Guy	 		

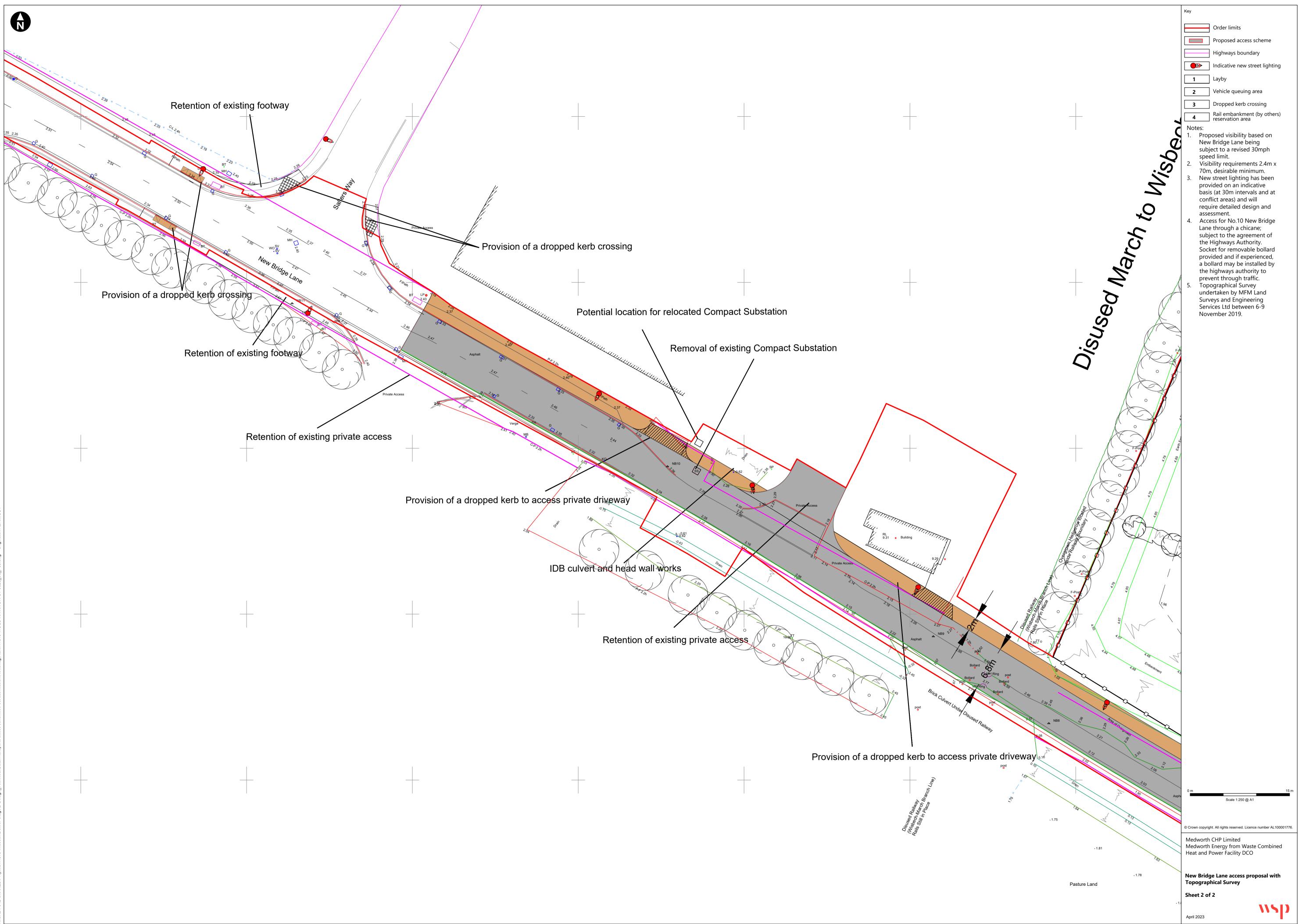
Approved	by
----------	----

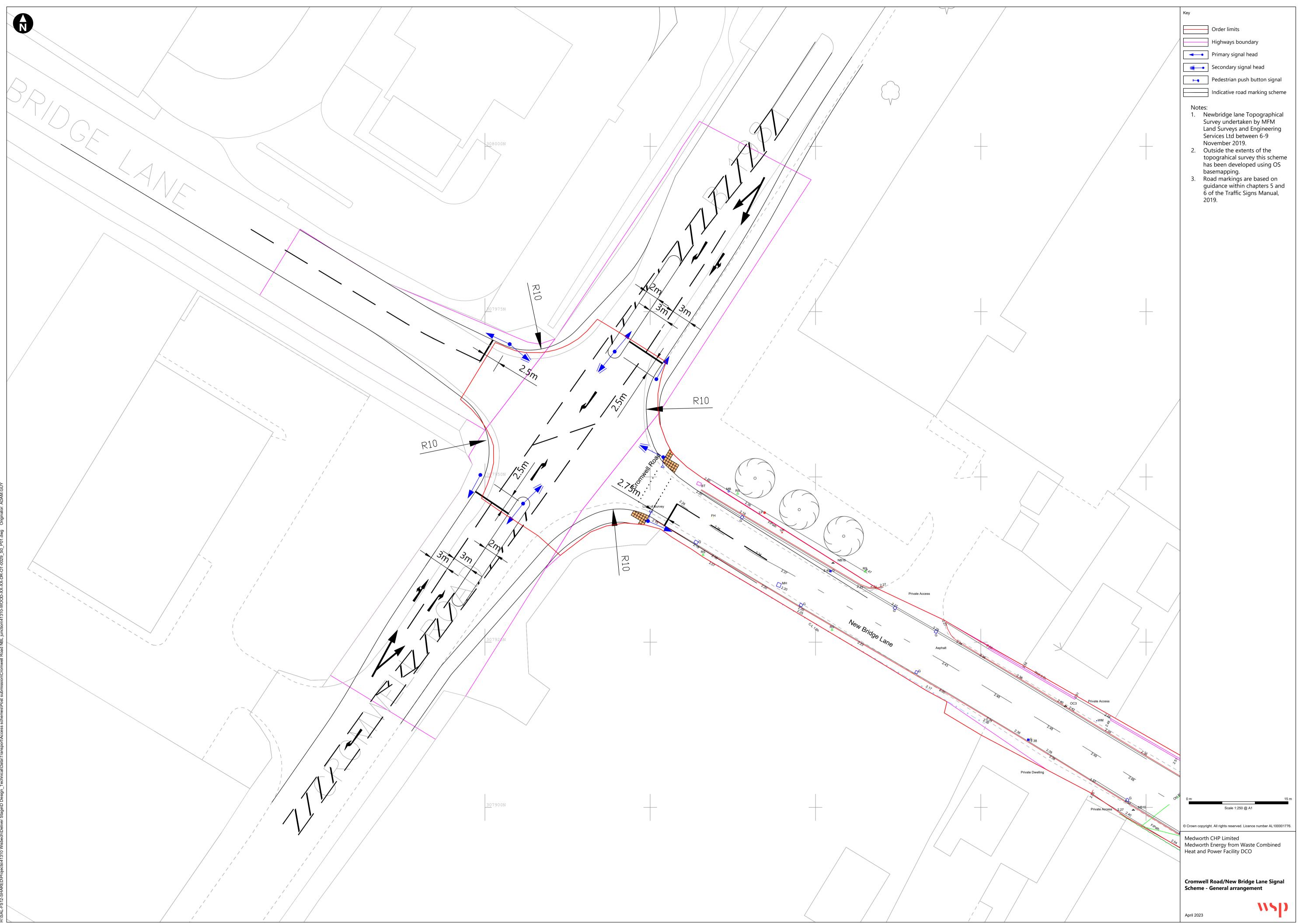
Grace Smith

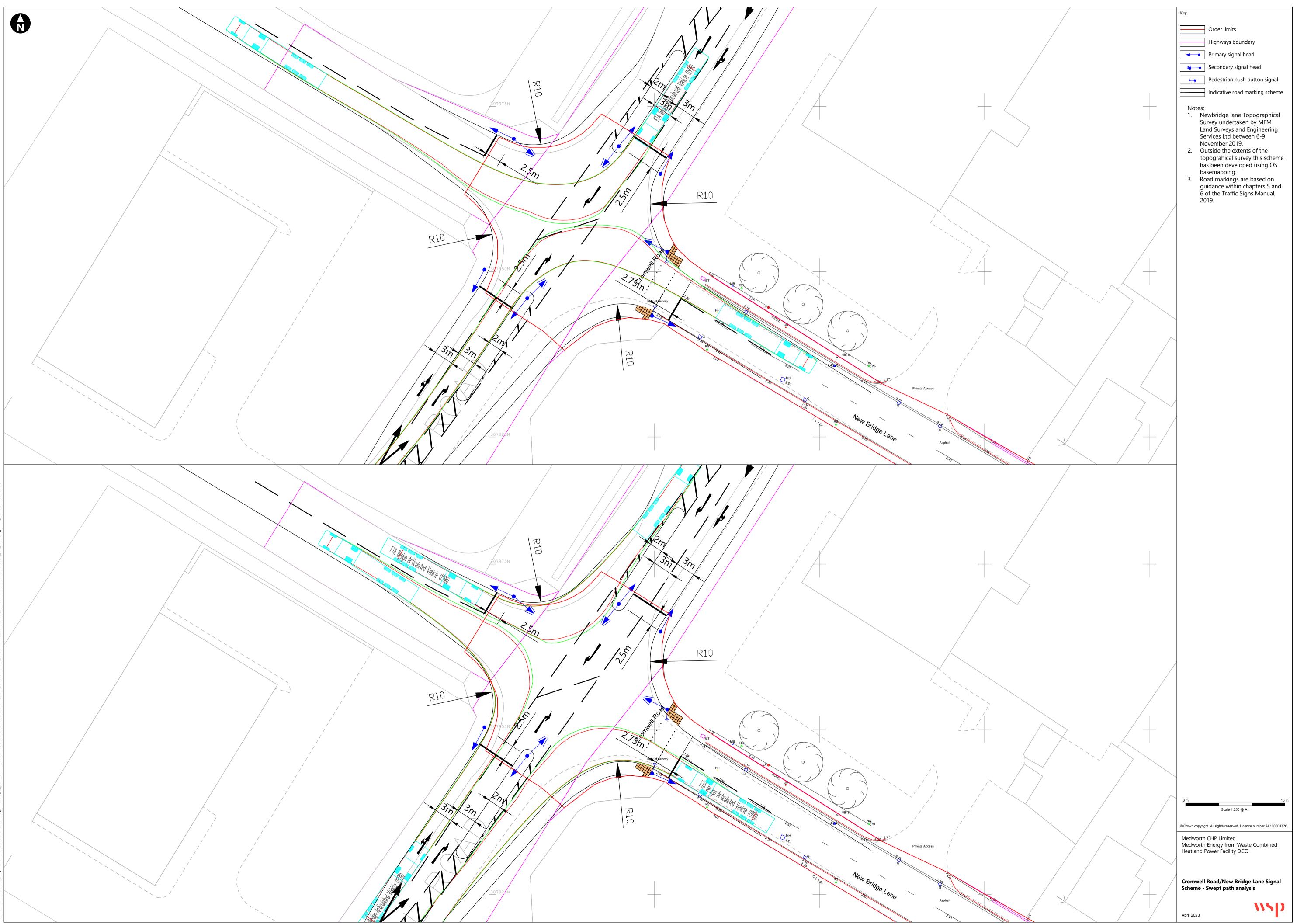
Copyright and non-disclosure notice

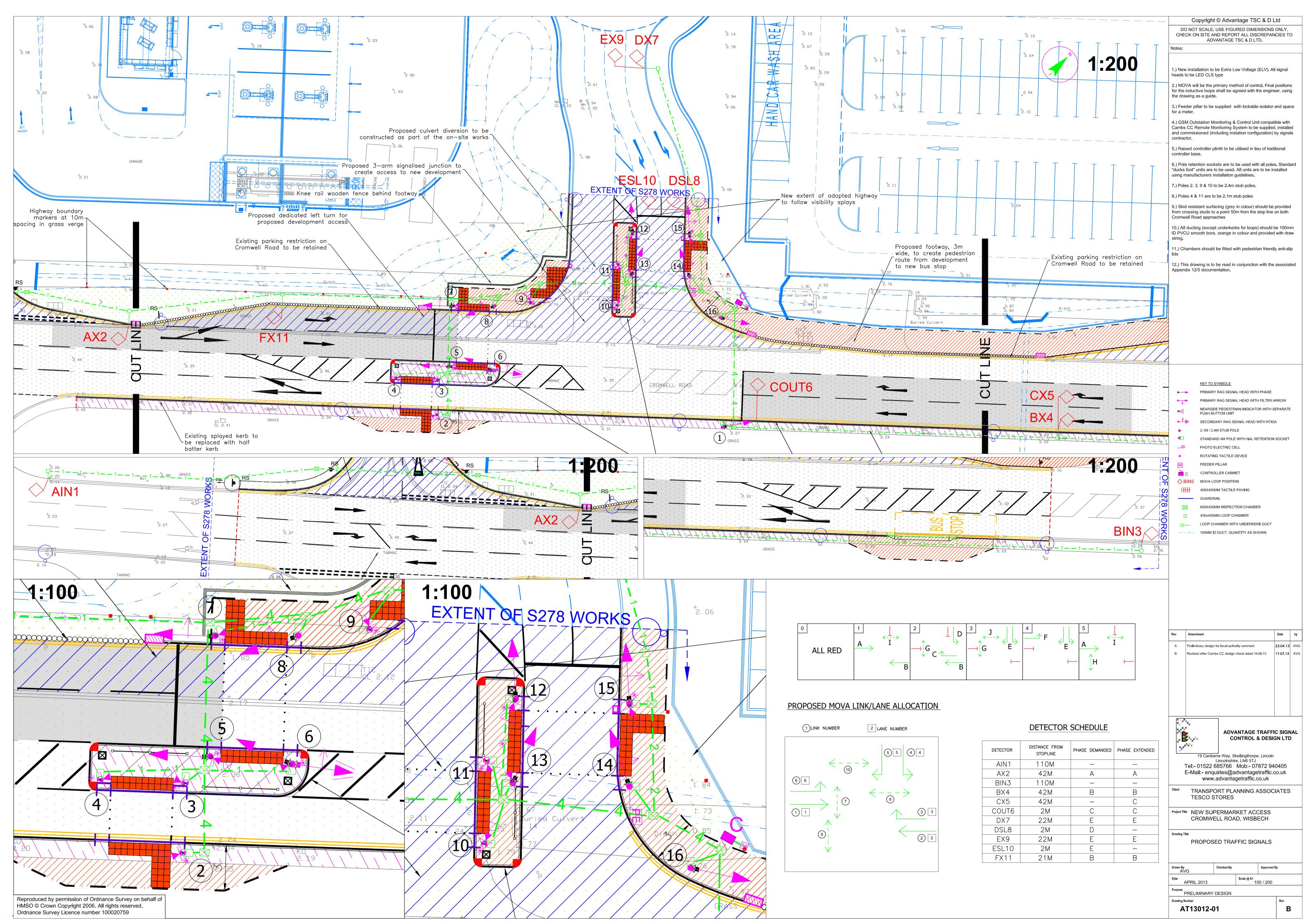
The contents and layout of this report are subject to copyright owned by save to the extent that copyright has been legally assigned by us to another party or is used by WSP under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of WSP. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.


Third party disclaimer


Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by WSP at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. WSP excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.


Management systems


This document has been produced by WSP Environment & Infrastructure Solutions UK Limited in full compliance with our management systems, which have been certified to ISO 9001, ISO 14001 and ISO 45001 by Lloyd's Register.


Document revisions		
No.	Details	Date
P01	RSA Stage 1 brief	09/05/23

Appendix C Stage 1 Road Safety Audit

Medworth CHP Limited

MEDWORTH ENERGY FROM WASTE COMBINED HEAT AND POWER FACILITY DCO, NEW BRIDGE LANE, WISBECH

Stage 1 Road Safety Audit

Medworth CHP Limited

MEDWORTH ENERGY FROM WASTE COMBINED HEAT AND POWER FACILITY DCO, NEW BRIDGE LANE, WISBECH

Stage 1 Road Safety Audit

CONFIDENTIAL

PROJECT NO. 62280400

OUR REF. NO. 62280400_RSA1_001

DATE: MAY 2023

WSP 62-64 Hills Road Cambridge CB2 1LA

Quality control

Issue/revision	First issue	Revision 1	Revision 2	Revision 3
Remarks	Issue to Client			
Date	May 2023			
Prepared by	Chris Hodges			
Signature	@			
Checked by	Maamle Okutu			
Signature	A particle butter			
Authorised by	Maamle Okutu			
Signature	A partet kuta			
Project number	62280400			
Report number	62280400_RSA1_001			
File reference	As above			

CONTENTS

CONTENTS	1
1. PROJECT DETAILS	2
2. INTRODUCTION	3
3. PROBLEMS IDENTIFIED IN PREVIOUS ROAD SAFETY AUDITS	6
4. PROBLEMS IDENTIFIED AT THIS STAGE 1 ROAD SAFETY AUDIT	7
4.1. PROBLEM 1	7
4.2. PROBLEM 2	8
4.3. PROBLEM 3	9
4.4. PROBLEM 4	10
4.5. PROBLEM 5	10
4.6. PROBLEM 6	11
4.7. PROBLEM 7	12
4.8. PROBLEM 8	13
4.9. PROBLEM 9	13
4.10. PROBLEM 10	14
4.11. PROBLEM 11	14
4.12. PROBLEM 12	15
4.13. PROBLEM 13	16
4.14. PROBLEM 14	16
5. AUDIT TEAM STATEMENT	18

Appendices

APPENDIX A

APPENDIX B

1. PROJECT DETAILS

Report title:	Medworth Energy, New Bridge Lane, Wisbech, Cambridge, Priority Junction Upgrade 62280400_RSA1_001	
Date:	May 2023	
Document reference and revision:	Stage 1 Road Safety Audit	
Prepared by:	WSP	
On Behalf of:	Cambridgeshire County Council	

2. INTRODUCTION

- 2.1.1. This report results from a Stage 1 Road Safety Audit carried out on the New Bridge Lane / Cromwell Road, Cambridge, on behalf of Nigel Eggar, Audit Project Sponsor, Cambridgeshire County Council. The Road Safety Audit was carried out during May 2023.
- 2.1.2. The Road Safety Audit Team approved by Nigel Eggar, Audit Project Sponsor, was as follows:

Audit Team Leader: Maamle Okutu, BSc (Hons), MSc, CEng, MCIHT,

MSoRSA

Audit Team Member Chris Hodges MCIHT

Maamle Okutu holds a Road Safety Certificate of Competence meeting the requirements of the European Directive 2008/96/EC and GG119 paragraph 3.9 and appendix G.

- 2.1.3. The audit took place in May 2023. The Road Safety Audit was undertaken in accordance with the Road Safety Audit brief provided by Grace Smith, WSP, on behalf of Nigel Eggar, Audit Project Sponsor, Cambridgeshire County Council and accepted by the Audit Team.
- 2.1.4. The Audit Team visited the site together on Friday 12th May between 12pm and 2pm. The weather was overcast with periods of rainfall. The road surface was wet during the site visit. The traffic flow was moderate. A number of pedestrians and cyclists observed during the site visit.
- 2.1.5. The Road Safety Audit also comprised of an examination of the documents and drawings supplied to the Road Safety Audit Team, referenced in Appendix A of this report.
- 2.1.6. All comments and recommendations are referenced to the design drawings and the locations have been indicated on the plan located in Appendix B.
- 2.1.7. The terms of reference of the Road Safety Audit are as described in the Design Manual for Roads and Bridges (DMRB) Standard GG 119 Road Safety Audit, Revision 2, with following exception.
 - The Audit Report has been submitted to the design organisation and not directly to the Overseeing Organisation.
- 2.1.8. The Road Safety Audit Team has examined and reported only on the road safety implications of the scheme as presented and has not examined or verified the compliance of the designs to any other criteria.
- 2.1.9. No Departures from Standards relating to the scheme were provided to the Audit Team.
- 2.1.10. Audit administration

This Audit Report has been submitted to the Cambridgeshire County Council by the design organisation to allow an RSA response report to be produced. This should be completed within 1 month of the issue of the RSA report and the Overseeing Organisation should then provide a copy to the RSA team for information.

The Overseeing Organisation is responsible for identifying any misinterpretations of the highway scheme proposals or if any problem or recommendation is not accepted.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 3 of 18

Safety issues identified during the audit and site inspection which the Terms of Reference exclude from this report, but which the audit team wishes to draw to the attention of the Overseeing Organisation, will be set out in a separate letter. Maintenance issues should be reported directly to the maintaining agent.

2.2. Purpose of the Scheme (taken directly from brief)

This Stage 1 Road Safety Audit covers the proposed signalised junction at the New Bridge Road / Cromwell Road junction and proposed alterations on New Bridge Road.

During the Development Consent Order process for the Medworth Energy from Waste (EfW) and Combined Heat and Power (CHP) facility, Cambridgeshire County Council has requested that the B198 Cromwell Road/New Bridge Lane junction – located within Wisbech – is upgraded to a four-arm signalised junction to ensure that additional HGV traffic which is expected to be generated by the development is sufficiently accommodated within the B198/New Bridge Lane junction and protected from conflicting traffic movements.

The B198/New Bridge Lane junction is located in the south-west of the town of Wisbech. South of the junction the B198 routes to the A47, north of the junction the B198 routes into the commercial centre of Wisbech town. The New Bridge Lane west arm provides access to a small number of residential properties and access for deliveries into the Tesco supermarket. The New Bridge Lane east arm currently provides access to residential and industrial land uses and will be upgraded as part of the development to provide access into the proposed site.

Currently the B198 Cromwell Road/New Bridge Lane junction is a four-arm priority junction where the New Bridge Lane East and West arms are the minor arms of the junction which give way to the major arm the B198 Cromwell Road. Right turn bays are provided mid junction to facilitate movement from B198 into the New Bridge Lane east and west arms.

The proposed scheme will upgrade the junction into a four-arm signalised junction where all necessary infrastructure and works will be undertaken to accommodate traffic signal infrastructure and anticipated movements. This will include the following:

- Provision of stop lines and primary and secondary traffic signal columns on all arms of the junction.
- Realignment of the kerbs throughout the junction to accommodate additional lanes and the swept path of anticipated HGV movements.
- Provision of islands within the junction to accommodate traffic signal columns and protect movements.
- Provision of signalised right turns with right turn only lanes and right turn road markings mid junction.
- Provision of a signalised pedestrian crossing over New Bridge Lane east arm.
- Provision of all necessary road markings to ensure clear guidance to vehicles.

The proposed New Bridge Lane traffic signal junction is proposed to be linked to the existing Tesco traffic signal junction.

The Scheme also proposes alterations along New Bridge Lane to widen it to 6.8m wide to accommodate HGV movements generated by the proposed Medworth Site. Included in the DCO application is a proposal to reopen New Bridge Lane across the disused March to Wisbech Railway, with the agreement of Network Rail, and that it is this reopening which enables the Applicant to take access from Cromwell Road into the proposed site access. New Bridge Lane will be closed (to vehicles) east of the proposed site access and that as such it will not operate as a through route.

3. PROBLEMS IDENTIFIED IN PREVIOUS ROAD SAFETY AUDITS

The audit team have not been made aware of any previous road safety audits.

4. PROBLEMS IDENTIFIED AT THIS STAGE 1 ROAD SAFETY AUDIT

4.1. PROBLEM 1

Location: New Bridge Lane (East)

Summary: Lack of edge protection leading to vehicles or pedestrian/cyclists falling down ditches/brooks resulting in injury.

Drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 shows the widening of the existing carriageway on both sides into the existing verges There are existing deep, steep sided ditches/brooks along New Bridge Lane at its eastern end resulting in a vertical drop. It is not clear from the drawings provided what proposals are in place for the existing ditches.

Figure 1 – Existing drainage features along New Bridge Lane (east)

Lack of a suitable edge protection may result in pedestrians falling into the ditch resulting in injury or vehicles entering the ditch increasing the risk of injury to vehicle occupants.

RECOMMENDATION:

It is recommended that a suitable level of edge protection is provided.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 7 of 18

4.2. **PROBLEM 2**

Location: Waste Heat Power Facility Access – New Bridge Lane (East)

Summary: Poor access visibility leading to collisions between cyclists/pedestrians and vehicles.

The proposed access to the Waste Heat Power Facility is located off New Bridge Lane where there is matured vegetation. No visibility splay drawings have been provided so it is unclear what visibility will be achieved at the access. The carriageway to the east of the access is restricted to nonmotorised users use.

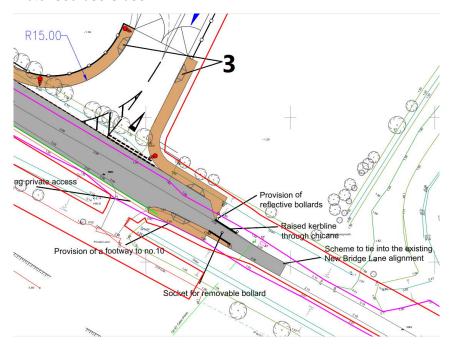


Figure 2 - Extract from drawing 41310-WOOD-XX-XX-DR-OT-0026 S0 P03

If adequate visibility is not provided from the access, drivers may fail to see pedestrians or cyclists approaching the access leading to collisions involving vehicles and pedestrians/cyclists.

RECOMMENDATION:

It is recommended adequate visibility is provided to and from the access.

Page 8 of 18

4.3. **PROBLEM 3**

Location: Waste Heat Power Facility Access – New Bridge Lane (East)

Summary: Poor access visibility leading to collisions between vehicles and pedestrians

There is an inset uncontrolled crossing located near the gate on the proposed access into the Waste Heat Power Facility. Drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 provided shows a fence behind the footway to the west of the access, as well as a gate, and internal fence. It is unclear from the drawings what the boundary treatment would be.

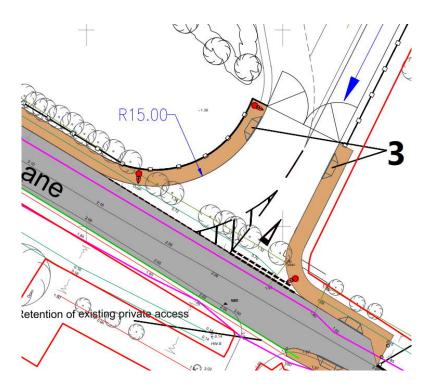


Figure 3 - Extract from drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03

Pedestrians crossing at this location may have reduced visibility of vehicles approaching from New Bridge Lane or exiting the Waste Heat Power Facility due to the boundary treatment and drivers may not see pedestrians' step into the carriageway to cross leading to collisions between vehicles and pedestrians.

Pedestrians may also choose to cross at the mouth of the access due to the proposed crossing being away from their desire line. Drivers may not anticipate pedestrians crossing at this location increasing the risk of collisions between vehicles and pedestrians.

RECOMMENDATION:

It is recommended that the crossing point is relocated, or adequate visibility provided to and from the crossing points.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 9 of 18

PROBLEM 4 4.4.

Location: New Bridge Lane (East)

Summary: Lack of adequate drainage provision leading to ponding and loss of control incidents.

The existing carriageway on New Bridge Lane (East) drains via ditches on the eastern end and kerbs and gullies. Although it is noted that the design is preliminary at this stage, it is unclear how the carriageway is expected to drain.

Figure 4 - Existing layouts at eastern end of New Bridge Lane (east)

If adequate drainage is not provided, the carriageway may pond and there is a risk of loss of control incidents especially during intense periods of precipitation and/or freezing weather conditions.

RECOMMENDATION:

It is recommended that adequate drainage is provided.

4.5. **PROBLEM 5**

Location: Private Access junction – New Bridge Lane (East)

Summary: Poor visibility to and from access leading to T-bone collisions or shunts

There is an existing private access on the north side of New Bridge Lane at its eastern end which is to be retained. It is however unclear what the proposals are beyond the proposed footway and whether there will be adequate visibility to and from the access.

Figure 5 - View looking east on New Bridge Lane

Page 10 of 18

If adequate visibility to and from the access is not provided, it could lead to vehicles turning onto New Bridge Lane at unsuitable gaps in traffic flow leading to T-bone collisions or shunts.

RECOMMENDATION:

It is recommended adequate visibility is provided to and from the access in line with the speed of the road.

4.6. PROBLEM 6

Location: New Bridge Lane (East) Sub-Station

Summary: Lack of maintenance access resulting in pedestrian/vehicular collisions.

The existing compact sub-station on New Bridge Lane (East) is to be relocated behind the proposed footway as part of the scheme proposals.

Figure 6 - Existing sub-station on New Bridge Lane

The existing sub-station is currently accessible from the public highway with maintenance vehicles able to park on a widened section of the existing carriageway. If a suitable access is not provided, maintenance vehicles may park on footways and block the paths of pedestrians forcing pedestrians to step into the carriageway at risk of collision with vehicles.

RECOMMENDATION:

It is recommended that a suitable maintenance access is provided to the sub-station.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 11 of 18

4.7. PROBLEM 7

Location: Copart Private Access - New Bridge Lane (East)

Summary: Traffic sign obstructing visibility to and from access leading to T-bone collisions or shunts

There is an existing private access located on the south side of New Bridge Lane, immediately east of Salters Way which provides access to Copart car salvage auctions. There is an existing sign located in the verge to the east of the access. The position and size of the sign may restrict visibility to the right of the access.

Figure 7 - View looking northwest on New Bridge Lane

The restricted visibility may lead to vehicles exiting the access at unsuitable gaps in traffic flow leading to T-bone collisions or shunts.

RECOMMENDATION:

It is recommended that the sign is relocated outside the visibility splay at the access.

Page 12 of 18

4.8. PROBLEM 8

Location: New Bridge Lane (East)

Summary: Lack of waiting restrictions could lead to side swipe between larger vehicles and vehicles parked on New Bridge Lane (East).

There is currently no parking restriction on New Bridge Lane (East). During the site visit, it was observed that vehicles parked on both sides of the carriageway and a high percentage of vehicles accessing New Bridge Lane East were HGVs. The scheme proposal will increase the number of HGVs accessing New Bridge Lane East.

Figure 8 - Parking on New Bridge Lane

Without parking restrictions, drivers may continue to park on both sides of New Bridge Lane and may make it difficult for larger vehicles to access New Bridge Lane leading to side swipe collisions.

RECOMMENDATION:

It is recommended that a Traffic Regulation Order (TRO) and waiting restrictions are implemented to restrict parking on New Bridge Lane (East).

4.9. PROBLEM 9

Location: Junction of New Bridge Lane with Cromwell Road

Summary: Existing traffic signs leading to driver confusion, sudden braking and shunts.

There are existing give ways signs at the junction of New Bridge Lane with Cromwell Road.



Figure 9 – View looking west on New Bridge Lane (East) at Cromwell Road junction.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 13 of 18

With the introduction of the traffic signals at the junction, these signs will become redundant. If the existing signs are retained in their current location, it may confuse drivers as to whether to give way at the junction leading to driver hesitation, sudden braking and shunts.

RECOMMENDATION:

It is recommended that the existing give way signs at the junction are removed.

4.10. PROBLEM 10

Location: Junction of New Bridge Lane with Cromwell Road.

Summary: Existing traffic signs obscuring visibility to the traffic signals leading to shunts and T-bone collisions.

The scheme involves the signalisation of the junction of New Bridge Lane with Cromwell Road. There are existing speed limit and give ways signs at the junction. The location of the existing signs may obscure visibility to the proposed traffic signals. This could lead to drivers seeing signals late and braking suddenly resulting in shunts. Vehicles may also fail to stop at the signals resulting in T-bone collisions with vehicles travelling on Cromwell Road. (See also Problem 9)

RECOMMENDATION:

It is recommended that a review of the signs is undertaken and if required, signs are relocated to provide adequate visibility to the traffic signals.

4.11. PROBLEM 11

Location: New Bridge Lane / Cromwell Road junction

Summary: Signal staging leading to shunts and T-bone collisions.

The existing junction of New Bridge Lane with Cromwell Road is to be signalised The northbound and southbound approaches to the junction on Cromwell Road are two lane approaches with a right turning pocket.

Figure 10 - View looking north on Cromwell Road

WSP Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech May 2023 Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001

Page 14 of 18

Medworth CHP Limited

No signal staging diagrams have been provided so it is unclear how the signals will operate. If the straight ahead and right turn manoeuvres on both approaches on Cromwell Road are run together, it could lead to a gap seeking right turn increasing the risk of T-bone collisions.

If there are separate phases for the right and straight-ahead manoeuvres on both approaches on Cromwell Road, this may lead to right turning traffic blocking the straight-ahead movements increasing the risk of shunts.

RECOMMENDATION:

It is recommended that the signal staging is reviewed to reduce the risk of shunts and T-bone collisions.

4.12. PROBLEM 12

Location: New Bridge Lane / Cromwell Road junction

Summary: Insufficient road width leading to side swipes, loss of control incidents or T-bone collisions

The lane widths provided at the proposed junctions are 3m wide. The swept path drawings provided for a 16.5m articulated vehicle at some locations show a vehicle overhang on the lane markings or traffic island. During the site visit, other types of larger vehicles were observed using the junction.

If adequate lane widths are not provided these could lead to side swipe collisions. Larger vehicles may also overrun the kerbs leading to loss of control incidents.

Where swept path drawings show an overhang on the traffic island, this may reduce the lateral clearance to signal poles. Insufficient lateral clearance could result in vehicles colliding with the traffic signal damaging or rotating the signal leading to drivers not seeing the traffic signal aspect and failing to stop at the junction resulting in T-bone collisions.

RECOMMENDATION:

It is recommended that vehicle tracking is undertaken for the largest vehicle anticipated to access the junction and if required, the kerb lines at the junction amended to accommodate the swept path of the largest vehicle.

Medworth Energy from Waste Combined Heat and Power Facility DCO, new bridge lane, Wisbech WSP Project No.: 62280400 | Our Ref No.: 62280400_RSA1_001 May 2023 Medworth CHP Limited Page 15 of 18

4.13. PROBLEM 13

Location: New Bridge Lane / Cromwell Road junction

Summary: Inadequate carriageway width leading to vehicle overrunning kerbs and loss of control incidents or collisions between vehicles and pedestrians.

Vehicle tracking have been provided for a 16.5m articulated vehicle. During the site visit, a number of larger vehicles including a transporter and an HGV recovering another HGV. It was also observed that an HGV turning left out of New Bridge Lane swung into the opposing carriageway to complete the turning manoeuvre.

Figure 11 - Car transporter with trailer were observed entering New Bridge Lane

If adequate carriageway width is not provided at the junction, this could lead to larger vehicles overrunning the kerb resulting in loss of control incidents or collisions between vehicles and pedestrians on the footway.

RECOMMENDATION:

It is recommended that vehicle tracking is undertaken for the largest vehicle anticipated to access New Bridge Lane and if required, the kerb lines at the junction amended to accommodate the swept path of the largest vehicle.

4.14 **PROBLEM 14**

Location: Cromwell Road, approach to New Bridge Lane, Northbound & southbound

Summary: Traffic signal 'see through effect' leading to red light running, shunts and T-bone collisions.

The existing junction of Tesco with Cromwell Road immediately north of the proposed junction is signalised. The signals at the Tesco junction are visible from a distance approximately 350m south of the junction of New Bridge Lane with Cromwell Road and may create a see-through effect.

Page 16 of 18

Figure 12 – View looking north on Cromwell Road, south of the New Bridge Lane junction.

Drivers approaching the New Bridge Lane junction with Cromwell Road may still see the signals at the junction further ahead. This could result in vehicles failing to stop, or braking late, resulting in shunts on the approach or T-Bone Collisions with vehicles at the junction.

RECOMMENDATION:

It is recommended the phasing of the two signals are linked to have both signals running together or measures are implemented to remove the see-through effects.

End of Problems identified and Recommendations in this Stage 1 Audit

5. AUDIT TEAM STATEMENT

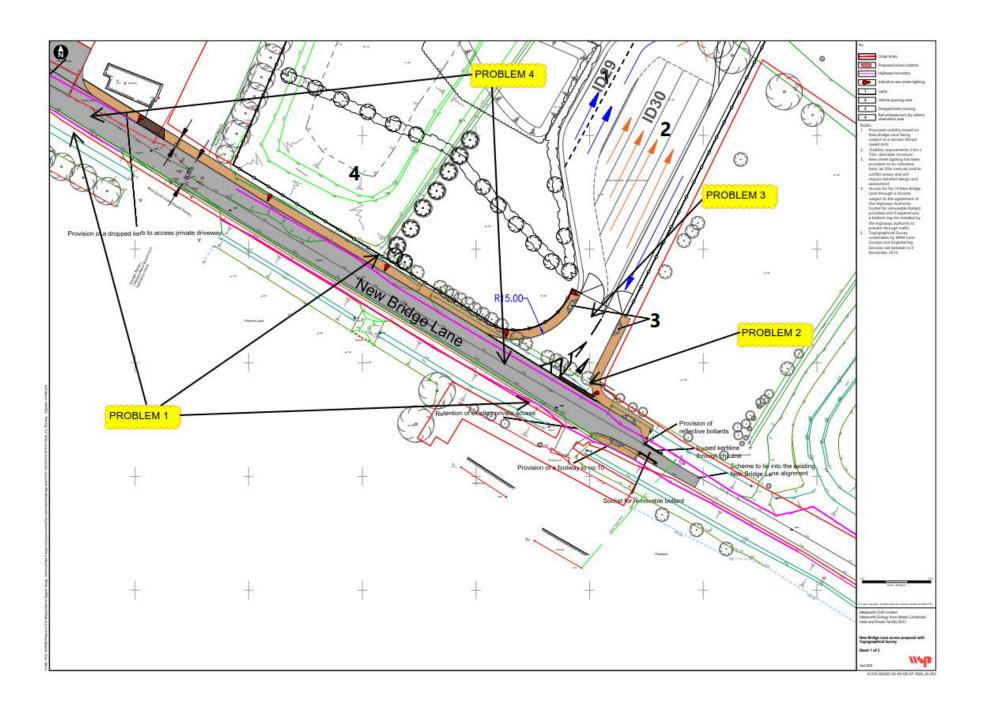
We certify that this audit has been carried out in accordance with GG 119 with exceptions identified in Para 2.17.			
ROAD SAFETY AUDIT TEAM LEADER			
Name:	Maamle Okutu		
Signed:	Mantathata		
Position:	Associate Director.		
Organisation:	WSP		
Date:	18 th May 2023		
ROAD SAFETY AUDIT TEAM MEMBER(s)			
Name:	Chris Hodges		
Signed:	OP)		
Position:	Principal Highways Engineer		
Date:	18 th May 2023		

Appendix A

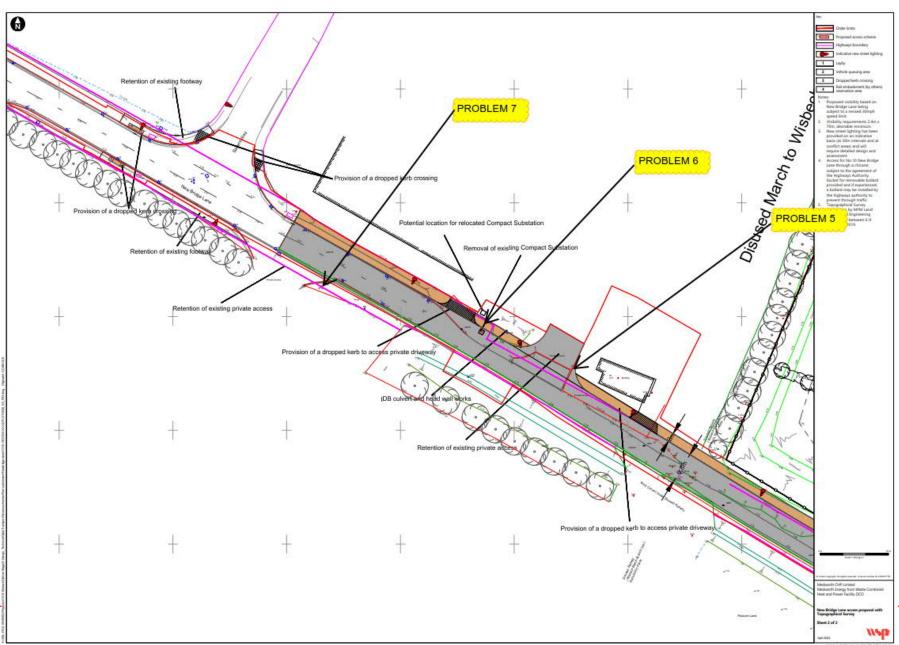
DOCUMENT LIST

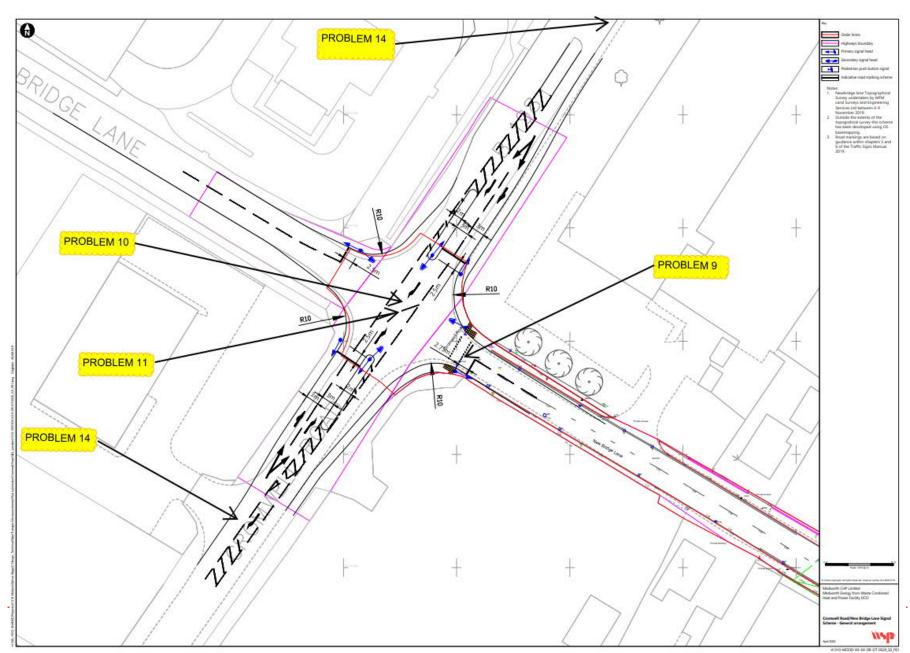
Documents

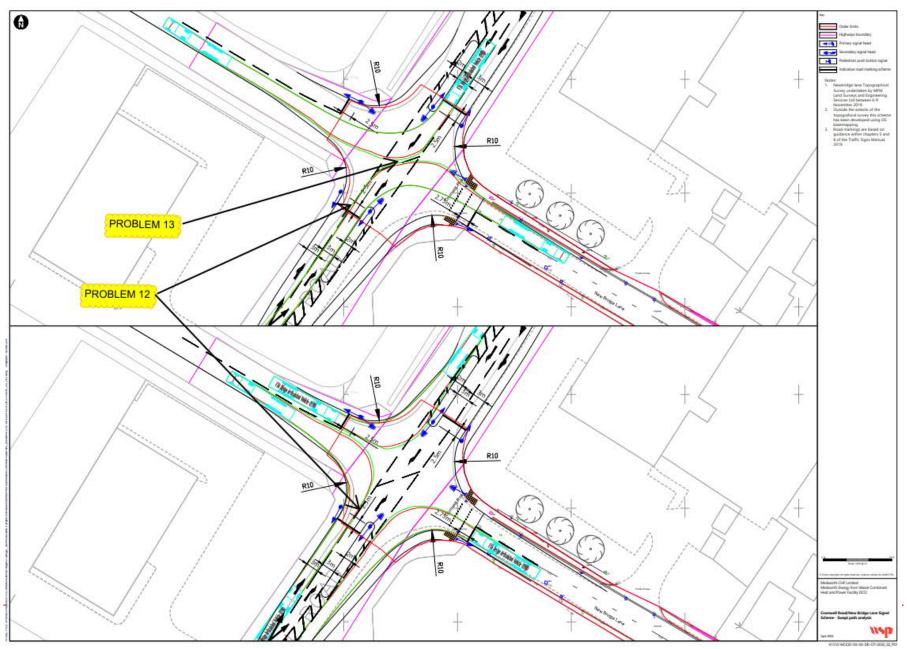
Road Safety Audit Brief - 41310-WOOD-XX-XX-RP-OT-0003_S0_P01


Drawings

- New Bridge Lane access proposal with Topographical Survey Sheet 1 of 2 41310-WOOD-XX-XX-DR-OT-0026_S0_P03
- New Bridge Lane access proposal with Topographical Survey Sheet 2 of 2 41310-WOOD-XX-XX-DR-OT-0026_S0_P03
- Cromwell Road/New Bridge Lane Signal Scheme General arrangement 41310-WOOD-XX-XX-DR-OT-0029_S0_P01
- Cromwell Road/New Bridge Lane Signal Scheme Swept path analysis 41310-WOOD-XX-XX-DR-OT-0030_S0_P01
- New Supermarket Access Cromwell Road Wisbech AT13012-1 Rev B


Appendix B


PROBLEM LOCATION PLANS



WSP 62-64 Hills Road Cambridge CB2 1LA wsp.com

Appendix D Stage 1 Road Safety Audit Response Report

Technical note:

New Bridge Lane Road Safety Audit Stage 1 Response Report

1. Project Details

Table 1.1 Project Details

Report title	New Bridge Lane Road Safety Audit Stage 1 Response Report
Date:	23/05/2023
Document reference and revision:	41310-WOOD-XX-XX-TN-OT-0004_S0_P01
Prepared by:	WSP
On behalf of	MVV Environment Ltd

Table 1.2 Authorisation Sheet

Project:	Medworth Energy from Waste Combined Heat and Power Facility DCO
Report Title:	New Bridge Lane Road Safety Audit Stage 1 Response Report
Prepared by:	
Name:	Grace Smith
Position:	Associate Director
Signed:	
Date:	
Approved by:	
Name:	
Position:	
Signed:	
Organisation:	Cambridge County Council
Date:	

2. Introduction

On behalf of MVV Environment Ltd, WSP have produced preliminary designs for upgrading the New Bridge Lane/B198 Cromwell Road junction in Wisbech to a signalised junction and a scheme to upgrade New Bridge Lane between the B198 junction and the proposed access to the Medworth EfW site. The proposed upgrades to Newbridge Lane and the adjacent Newbridge Lane/B198 Cromwell Road junction would mean that safer and more efficient access for operational HGV traffic to the Medworth EfW site can be provided.

The signalisation scheme was requested by Cambridgeshire County Council (CCC) during the Development Consent Order process for the Medworth Energy from Waste (EfW) and Combined Heat and Power (CHP) facility. The proposed scheme would see the existing four arm priority junction be upgraded to a four-arm signalised junction which would be linked to the existing traffic signal of the adjacent Cromwell Road/Tesco access junction. A traffic model has been created using ©JCT LinSig software to ensure that additional HGV traffic which is expected to be generated by the development is sufficiently accommodated within the B198/New Bridge Lane junction and protected from conflicting traffic movements, and both junctions have sufficient highway capacity with the proposed signal operations.

This report has been produced in response to the Stage 1 Road Safety Audit (RSA) undertaken in May 2023. The Audit comprised of a site visit undertaken by the CCC approved RSA team where the proposed scheme drawings and documents provided in the Stage 1 RSA brief were assessed onsite. The Stage 1 RSA identified 14 problems with the current schemes, responses to each problem are set out within this report.

3. Key Personnel

Table 3.1 Key Personnel

Overseeing Organisation:	Nigel Eggar
	Cambridgeshire County Council
RSA team:	Maamle Okutu,
	WSP 62-64 Hills Road Cambridge CB2 1LA
Design organisation:	Grace Smith
	WSP Amber Court William Armstrong Drive Newcastle upon Tyne NE4 7YQ

4. Road Safety Audit Decision Log

Table 4.1 Road Safety Audit Decision Log

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Problem 1 Location: New bridge Lane East (identified in RSA stage 1 appendix B) Summary: Lack of edge protection leading to vehicles or pedestrian/cyclists falling down ditches/brooks resulting in injury. Drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 shows the widening of the existing carriageway on both sides into the existing verges There are existing deep, steep sided ditches/brooks along New Bridge Lane at its eastern end resulting in a vertical drop. It is not clear from the drawings provided what proposals are in place for the existing ditches.	It is recommended that a suitable level of edge protection is provided.	Comment accepted. As per drawing 41310-WOOD-XX-XX-DR-OT-0033_S0_P01 and 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 the southern edge of the carriageway is proposed to be protected by trief kerbs. Trief kerb arrangement will be agreed with the CCC as the LHA. No footway or cycle provision is proposed on the southern edge of the carriageway and as such no protection for pedestrians and cyclists is proposed.		
Problem 2 Location: Waste Heat Power Facility Access - New Bridge Lane (East)	It is recommended adequate visibility is provided to and from the access.	Visibility splay for the proposed site access is provided on drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03. The splay provided is 2.4		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Summary: Poor access visibility leading to collisions between cyclists/pedestrians and vehicles.		x 70m based on New Bridge Lane being subject to a revised		
The proposed access to the Waste Heat Power Facility is located off New Bridge Lane where there is matured vegetation. No visibility splay drawings have been provided so it is unclear what visibility will be achieved at the access. The carriageway to the east of the access is restricted to non-motorised users use.	30mph speed limit and is in accordance with Table 2.10 of CD 109 and Section 3 of CD123.			
If adequate visibility is not provided from the access, drivers may fail to see pedestrians or cyclists approaching the access leading to collisions involving vehicles and pedestrians/cyclists.				
Problem 3	It is recommended that the	As per drawing 41310-		
Location: Waste Heat Power Facility Access - New Bridge Lane (East).	crossing point is relocated, or adequate visibility provided to and from the	WOOD-XX-XX-DR-OT- 0026_S0_P03 the fence line on the western side		
Summary: Poor access visibility leading to collisions between vehicles and pedestrians.	crossing points.	of the access has been realigned to provide a suitable visibility splay for		
There is an inset uncontrolled crossing located near the gate on the proposed access into the Waste Heat Power Facility. Drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 provided shows a fence behind the footway to the west of the access, as well as a gate, and internal fence. It is unclear from the drawings		pedestrians crossing at the site access. Visibility splay for pedestrians is 40m for a road with a 30mph speed limit based on CCC Highways Development Management – General		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Pedestrians crossing at this location may have reduced visibility of vehicles approaching from New Bridge Lane or exiting the Waste Heat Power Facility due to the boundary treatment and drivers may not see pedestrians' step into the carriageway to cross leading to collisions between vehicles and pedestrians. Pedestrians may also choose to cross at the mouth of the access due to the proposed crossing being away from their desire line. Drivers may not anticipate pedestrians crossing at this location increasing the risk of collisions between vehicles and pedestrians.		Development, Figure 5, and Section 2.2. The position of the dropped kerb crossings will be moved south, and a pedestrian refuge will be provided mid junction. The proposed location of the new crossing is shown on 41310-WOOD-XX-XX-DR-OT-0026_S0_P03.		
Problem 4 Location: New Bridge Lane (East) Summary: Lack of adequate drainage provision leading to ponding and loss of control incidents. The existing carriageway on New Bridge Lane (East) drains via ditches on the eastern end and kerbs and gullies. Although it is noted that the design is preliminary at this stage, it is unclear how the carriageway is expected to drain. If adequate drainage is not provided, the carriageway may pond and there is a risk of loss of control incidents especially during	It is recommended that adequate drainage is provided.	Design provided within drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 is to a preliminary detail only. An appropriate drainage scheme will be developed during the detailed design stage.		

					•
RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action	
intense periods of precipitation and/or freezing weather conditions.					
Problem 5 Location: Private Access junction – New Bridge Lane (East) Summary: Poor visibility to and from access leading to T-bone collisions or shunts There is an existing private access on the north side of New Bridge Lane at its eastern end which is to be retained. It is however unclear what the proposals are beyond the proposed footway and whether there will be adequate visibility to and from the access. If adequate visibility to and from the access is not provided, it could lead to vehicles turning onto New Bridge Lane at unsuitable gaps in traffic flow leading to T-bone collisions or shunts.	It is recommended adequate visibility is provided to and from the access in line with the speed of the road.	A new radius will be created at the corner with No.9 NBL and the existing fence line boundary of No.9 NBL will be trimmed back and can be further trimmed back if necessary so the 2.4m x 45m visibility splay can be provided.			
Problem 6 Location: New Bridge Lane (East) Sub-Station. Summary: Lack of maintenance access resulting in pedestrian/vehicular collisions. The existing compact sub-station on New Bridge Lane (East) is to be relocated behind the proposed footway as part of the scheme proposals.	It is recommended that a suitable maintenance access is provided to the sub-station.	Comment rejected. Compact substation will be relocated to the verge adjacent to the widened section of New Bridge Lane. It is anticipated that any work/maintenance required to be undertaken on the compact substation will be done by a small team who will make the area around the			

RSA Problem	RSA Recommendation	Design Organisation	Overseeing	Agreed RSA Action
		Response	Organisation Response	J
The existing sub-station is currently accessible from the public highway with maintenance vehicles able to park on a widened section of the existing carriageway. If a suitable access is not provided, maintenance vehicles may park on footways and block the paths of pedestrians forcing pedestrians to step into the carriageway at risk of collision with vehicles.		work safe for pedestrians and vehicles. It is not anticipated that a dedicated access will be required.		
Problem 7 Location: Copart Private Access – New Bridge Lane (East). Summary: Traffic sign obstructing visibility to and from access leading to T-bone collisions or shunts There is an existing private access located on the south side of New Bridge Lane, immediately east of Salters Way which provides access to Copart car salvage auctions. There is an existing sign located in the verge to the east of the access. The position and size of the sign may restrict visibility to the right of the access. The restricted visibility may lead to vehicles exiting the access at unsuitable gaps in traffic flow leading to T-bone collisions or shunts.	It is recommended that the sign is relocated outside the visibility splay at the access.	Comment accepted. This sign however belongs to Copart and they may have obtained prior permission from CCC and incurred financial cost. The feasibility of relocating this sign will be discussed with CCC and drawing 41310-WOOD-XX-XX-DR-OT-0026_S0_P03 would be amended if necessary.		
Problem 8 Location: New Bridge Lane (East)	It is recommended that a Traffic Regulation Order (TRO) and waiting	Comment accepted. The feasibility to introduce waiting restrictions (part		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Summary: Lack of waiting restrictions could lead to side swipe between larger vehicles and vehicles parked on New Bridge Lane (East). There is currently no parking restriction on New Bridge Lane (East). During the site visit, it was observed that vehicles parked on both sides of the carriageway and a high percentage of vehicles accessing New Bridge Lane East were HGVs. The scheme proposal will increase the number of HGVs accessing New Bridge Lane East. Without parking restrictions, drivers may continue to park on both sides of New Bridge Lane and may make it difficult for larger vehicles to access New Bridge Lane leading to side swipe collisions.	restrictions are implemented to restrict parking on New Bridge Lane (East).	time or full time) along New Bridge Lane (East) will be discussed with CCC. If the limited waiting restrictions were considered feasible, the design can be updated accordingly in the next design stage.		
Problem 9 Location: Junction of New Bridge Lane with Cromwell Road Summary: Existing traffic signs leading to driver confusion, sudden braking and shunts. There are existing give ways signs at the junction of New Bridge Lane with Cromwell Road. With the introduction of the traffic signals at the junction, these signs will become redundant. If the existing signs are retained in their current location, it may confuse drivers	It is recommended that the existing give way signs at the junction are removed.	Comment accepted. Existing give way signage will be removed and will be clearly annotated in the Site Clearance drawing which will be prepared as part of the detailed design stage.		

				•
RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
as to whether to give way at the junction leading to driver hesitation, sudden braking and shunts.				
Problem 10 Location: Junction of New Bridge Lane with Cromwell Road. Summary: Existing traffic signs obscuring visibility to the traffic signals leading to shunts and T-bone collisions. The scheme involves the signalisation of the junction of New Bridge Lane with Cromwell Road. There are existing speed limit and give ways signs at the junction. The location of the existing signs may obscure visibility to the proposed traffic signals. This could lead to drivers seeing signals late and braking suddenly resulting in shunts. Vehicles may also fail to stop at the signals resulting in T-bone collisions with vehicles travelling on Cromwell Road. (See also Problem 9)	It is recommended that a review of the signs is undertaken and if required, signs are relocated to provide adequate visibility to the traffic signals.	Comment accepted. A sign audit will be undertaken to inform the Site Clearance plan which will be part of the detailed design stage. The aim of the site audit is to review existing signs within the study area and remove any redundant signs to reduce street clutter.		
Problem 11 Location: New Bridge Lane / Cromwell Road junction Summary: Signal staging leading to shunts and T-bone collisions.	It is recommended that the signal staging is reviewed to reduce the risk of shunts and T-bone collisions.	Comment accepted. The LinSig traffic signal model has tested the proposed layout with separate phases for the right and straight-ahead manoeuvres. The traffic model will be submitted to		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
The existing junction of New Bridge Lane with Cromwell Road is to be signalised. The northbound and southbound approaches to the junction on Cromwell Road are two lane approaches with a right turning pocket.		CCC for review and approval.		
No signal staging diagrams have been provided so it is unclear how the signals will operate. If the straight ahead and right turn manoeuvres on both approaches on Cromwell Road are run together, it could lead to a gap seeking right turn increasing the risk of T-bone collisions.				
If there are separate phases for the right and straight-ahead manoeuvres on both approaches on Cromwell Road, this may lead to right turning traffic blocking the straight-ahead movements increasing the risk of shunts.				
Problem 12	It is recommended that vehicle tracking is	The signal junction has been designed to		
Location: New Bridge Lane / Cromwell Road junction	undertaken for the largest vehicle anticipated to access the junction and if required, the kerb lines at the junction amended to accommodate the swept path of the largest vehicle.	accommodate anticipated HGV movements (B198 north and south to and from New Bridge Lane west arm and B198 south arm to and from New		
Summary: Insufficient road width leading to side swipes, loss of control incidents or T-bone collisions				
The lane widths provided at the proposed junctions are 3m wide. The swept path drawings provided for a 16.5m articulated vehicle at some locations show a vehicle		Bridge Lane east arm) using a 16.5m long articulated HGV, the maximum legal length of		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
overhang on the lane markings or traffic island. During the site visit, other types of larger vehicles were observed using the junction. If adequate lane widths are not provided these could lead to side swipe collisions. Larger vehicles may also overrun the kerbs leading to loss of control incidents. Where swept path drawings show an overhang on the traffic island, this may reduce the lateral clearance to signal poles. Insufficient lateral clearance could result in vehicles colliding with the traffic signal damaging or rotating the signal leading to drivers not seeing the traffic signal aspect and failing to stop at the junction resulting in T-bone collisions.		an articulated vehicle within the UK. The proposed kerb line on Cromwell Road Northbound north east of New Bridge Lane (North) approach has been amended to provide a straight alignment for straight ahead traffic from Cromwell Road northbound. The swept path of the 16.5m articulated HGV through the junction are within the proposed lanes, only a marginal overhang on Cromwell Road South approach but the likelihood of two 16.5m artic lorry side by side would be low and one of them is likely to hang back to provide enough space for the other lorry to complete its turning manoeuvre.		
Problem 13	It is recommended that vehicle tracking is undertaken for the largest	The signal junction has been designed to accommodate anticipated		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Location: New Bridge Lane / Cromwell Road junction Summary: Inadequate carriageway width leading to vehicle overrunning kerbs and loss of control incidents or collisions between vehicles and pedestrians. Vehicle tracking have been provided for a 16.5m articulated vehicle. During the site visit, a number of larger vehicles including a transporter and an HGV recovering another HGV. It was also observed that an HGV turning left out of New Bridge Lane swung into the opposing carriageway to complete the turning manoeuvre. If adequate carriageway width is not provided at the junction, this could lead to larger vehicles overrunning the kerb resulting in loss of control incidents or collisions between vehicles and pedestrians on the footway.	vehicle anticipated to access New Bridge Lane and if required, the kerb lines at the junction amended to accommodate the swept path of the largest vehicle.	HGV movements (B198 north and south to and from New Bridge Lane west arm and B198 south arm to and from New Bridge Lane east arm) using a 16.5m long articulated HGV, the maximum legal length of an articulated vehicle within the UK. Lane widths and Kerb lines are based on the swept path of the 16.5m articulated HGV through the junction. It is noted that a vehicle transporter was witnessed accessing New Bridge Lane east during the onsite audit, this rigid HGV is likely to be an arrangement approximately 11-12m in length and would be comfortably accommodated within the junction.		
Problem 14 Location: Cromwell Road, approach to New Bridge Lane, Northbound & southbound	It is recommended the phasing of the two signals are linked to have both signals running together or measures are implemented to remove the see-through effects.	Comment accepted. The New Bridge Lane/B198 Cromwell Road junction signals are proposed to be linked to the existing signals at the B198/Tesco access junction. See		

RSA Problem	RSA Recommendation	Design Organisation Response	Overseeing Organisation Response	Agreed RSA Action
Summary: Traffic signal 'see through effect' leading to red light running, shunts and T-bone collisions.		through effects will be mitigated with the use of louvres on the signal aspects of the junctions.		
The existing junction of Tesco with Cromwell Road immediately north of the proposed junction is signalised. The signals at the Tesco junction are visible from a distance approximately 350m south of the junction of New Bridge Lane with Cromwell Road and may create a see-through effect.		The relevant details will be provided as part of detailed design stage.		
Drivers approaching the New Bridge Lane junction with Cromwell Road may still see the signals at the junction further ahead. This could result in vehicles failing to stop, or braking late, resulting in shunts on the approach or T-Bone Collisions with vehicles at the junction.				

5. Design Organisation and Overseeing Organisation Statement

Table 5.1 Design Organisation Statement

On behalf of the design organisation I certify that:

1) The RSA actions identified in response to the road safety audit problems in this road safety audit have been discussed and agreed with the Overseeing Organisation.

Name:
Signed:
Position:
Organisation:
Date:
Table 5.2 Overseeing Organisation Statement
On behalf of the Overseeing Organisation I certify that: 1) The RSA actions identified in response to the road safety audit problems in this road safety audit have been discussed and agreed with the design organisation; and
2) The agreed RSA actions will be progressed.
2) The agreed RSA actions will be progressed.
2) The agreed RSA actions will be progressed. Name:
The agreed RSA actions will be progressed. Name: Signed:

Issued by				
Adam Guy				
	Adam Guy			
Approved b	у			
Grace Smith				

Copyright and non-disclosure notice

The contents and layout of this report are subject to copyright owned by WSP (© WSP Environment & Infrastructure Solutions UK Limited 2023) save to the extent that copyright has been legally assigned by us to another party or is used by WSP under licence. To the extent that we own the copyright in this report, it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report. The methodology (if any) contained in this report is provided to you in confidence and must not be disclosed or copied to third parties without the prior written agreement of WSP. Disclosure of that information may constitute an actionable breach of confidence or may otherwise prejudice our commercial interests. Any third party who obtains access to this report by any means will, in any event, be subject to the Third Party Disclaimer set out below.

Third party disclaimer

Any disclosure of this report to a third party is subject to this disclaimer. The report was prepared by WSP at the instruction of, and for use by, our client named on the front of the report. It does not in any way constitute advice to any third party who is able to access it by any means. WSP excludes to the fullest extent lawfully permitted all liability whatsoever for any loss or damage howsoever arising from reliance on the contents of this report. We do not however exclude our liability (if any) for personal injury or death resulting from our negligence, for fraud or any other matter in relation to which we cannot legally exclude liability.

Management systems

This document has been produced by WSP Environment & Infrastructure Solutions UK Limited in full compliance with our management systems, which have been certified to ISO 9001, ISO 14001 and ISO 45001 by Lloyd's Register.

Document revisions			
No.	Details	Date	
P01	First Issue	24.05.2023	

